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Introduction: the language of 
mathematics in science

The aim of this book is to enable teachers, publishers, awarding bodies and others to achieve a 
common understanding of important terms and techniques related to the use of mathematics in the 
science curriculum for pupils aged 11–16.

Background
This publication was produced as part of the ASE/Nuffield project The Language of Mathematics in 
Science in order to support teachers of 11–16 science in the use of mathematical ideas in the science 
curriculum. This is an area that has been a matter of interest and debate for many years. Some of the 
concerns have been about problems of consistency in terminology and approaches between the two 
subjects. The project built on the approach of a previous ASE/Nuffield publication, The Language of 
Measurement, and the aims are rather similar: to achieve greater clarity and agreement about the way 
the ideas and terminology are used in teaching and assessment.

Two publications have been produced during the project. This publication, The Language of 
Mathematics in Science: A Guide for Teachers of 11–16 Science, provides an overview of relevant ideas 
in secondary school mathematics and where they are used in science. It aims to clarify terminology 
and to indicate where there may be problems in student understanding. The publication includes 
explanations of key ideas and terminology in mathematics, along with a glossary of terms. A second 
publication, The Language of Mathematics in Science: Teaching Approaches, uses teachers’ accounts to 
outline different ways that science and mathematics departments have worked together, and illustrates 
various teaching approaches with examples of how children respond to different learning activities.

About this publication
In developing this publication, the starting point was to identify relevant mathematical key words that 
should be included in the glossary. These were selected on the basis that the ideas form an important 
aspect of the current 11–16 science curriculum. Many familiar terms that pupils should know from 
elementary work in mathematics are not included (e.g. multiplication), although some terms are 
included that are currently not commonly used in 11–16 science but are potentially useful for science 
teachers to know about (e.g. box plot). The definitions of the selected key words are given in the 
Glossary for teachers at the end of this publication.

Definitions are useful for clarity, but only go so far. The major part of the publication consists of ten 
chapters, each explaining ‘clusters’ of these key words so that their use can be seen in context. The 
chapters and the associated key words are based around ‘kinds of things we do in science’. For example, 
‘Collecting data’ is concerned with terms such as ‘quantity’, ‘value’, ‘unit’ and ‘variable’; ‘Dealing with 
variability’ is concerned with terms such as ‘distribution’, ‘uncertainty’, ‘mean’ and ‘outlier’.
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The clusters of key words are included in a panel at the start of each chapter, and a complete list of 
these can be seen in the Overview of chapters. Note that a number of key words appear in more than 
one chapter. Within the chapters, the key words are indicated in blue underlined text: each of these 
is hyperlinked to the relevant entry in the glossary. Each entry has hyperlinks back to the relevant 
sections in the chapters, so the glossary also acts as an index.

The aims of the publication are to:

•	 provide an overview of the mathematics relevant to science that may be studied by pupils at 
secondary school

•	 indicate the relevance of the ideas to the activities undertaken in secondary school science

•	 clarify the meaning of the terms used where there are common misunderstandings or where 
there are different meanings in different contexts

•	 indicate as appropriate where there may be student misconceptions and problems in 
understanding

•	 identify, where relevant, approaches taken in mathematics teaching that may influence what is 
done in science lessons.

Although there is some discussion of the details of mathematical techniques and procedures, this is 
not intended to be comprehensive, since further information can be found in relevant mathematics 
references. Instead, the focus is on an understanding of the underlying principles of the use of 
mathematics in school science. The intention is that the booklet will be a useful day-to-day reference 
that teachers can use to clarify ideas, as well as being used to inform the production of schemes of 
work and in promoting collaboration with the mathematics department.

Mathematics and science
Consistency between mathematics and science is clearly desirable wherever possible: it is unhelpful 
to have arbitrary differences in approaches and terminology between the subjects. This publication 
has been developed in collaboration with both science and mathematics educators in order to ensure 
that the usage of the language is correct and, as far as possible, consistent across subjects. However, 
mathematics and science are different disciplines, each with its own purposes, traditions and practices, 
and this leads to some differences in the way language is used.

In science, we are used to terms such as ‘power’, ‘force’, ‘pressure’ and so on having different meanings 
in everyday language, compared with the precise definitions used in science. There are fewer words in 
the language than meanings in the world to be expressed. It is not that science is correct and everyday 
language is wrong, but that words are used in different ways in different contexts. It is important for 
pupils to be able to recognise these differences when they move between contexts.

In a similar way, there are differences in the way that some terms are used in mathematics and science. 
One example is the term ‘line’, which has a more precise meaning in mathematics than the way it is 
often used in science. In mathematics, a line is, by definition, straight. In science, however, it is quite 
common to talk about ‘straight lines’ and ‘curved lines’. Changing habitual ways of talking is hard: 
a good compromise in science might be to continue to refer to ‘straight lines’, but to talk of ‘curves’ 
rather than ‘curved lines’. Another example is the use of the word ‘histogram’. In mathematics, this 
refers to a display of a distribution of data in which the bars represent ‘frequency density’ for each class 
interval; in science, the bars of a histogram normally represent ‘frequency’. Teachers and pupils need 
to be aware of such differences in usage between mathematics and science. Where these differences 
exist, they are indicated in the glossary and discussed in the relevant chapters.
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In addition, some mathematical terms have multiple meanings in science; for example, ‘range’ may 
refer to the ‘range of a measuring instrument’, the ‘range of an axis on a graph’ or the ‘range of a 
variable’. Other such examples include ‘scale’, ‘coefficient’ and ‘variable’. Again, these differences in 
meanings are given in the glossary.

Collaboration between mathematics and science departments is clearly helpful in achieving a common 
understanding and in sequencing the introduction and use of mathematical ideas in an appropriate 
way. It is hoped that this publication will be useful  in stimulating and supporting such discussions. 
However, it is beyond the scope of the publication to recommend details of what should be taught 
and when: this will depend on particular circumstances. Similarly, it is beyond the scope of the 
publication to give an indication of what range of knowledge or skills might be expected of pupils 
of different ages. While the current curricula in the UK have been taken into account in developing 
this publication, it has not been the intention to make any specific references to any particular 
programmes of study or assessment arrangements.

Thinking about purposes and using judgement
Although this book is designed to be used as a reference source, with sufficient cross-references that 
any section can be read independently, there is also a narrative that runs through it. Chapters 1 
and 2 are concerned with the collection and processing of data, and Chapters 3 and 4 deal with 
the representation of data in tables, charts and graphs. Chapters 5 to 8 look at different kinds of 
relationships, from those where one variable is directly proportional to another to those where there 
is a good deal more variability in the data values. Finally, Chapter 9 focuses on the use of algebraic 
equations in science, and Chapter 10 looks at some of the areas of science that are also addressed in 
the mathematics curriculum.

One of the themes that runs throughout these chapters is the importance of thinking about purposes. 
What is the purpose of drawing this graph? What is the purpose of calculating this mean? It is not 
about the unthinking application of techniques but about considering what makes sense in different 
contexts. Knowing how to apply mathematical ideas in science is often a matter of using judgement. 

There are no ‘recipes’ for how to design experiments, collect data and handle results; there are also 
no ‘rules’ for when and how to use mathematical techniques in science. This does not mean that 
nothing can be seen as ‘correct’ or ‘incorrect’. It is important, for example, that pupils understand 
the meaning of ‘significant figures’, can distinguish this from ‘decimal places’ and can correctly apply 
the conventional rules of rounding. This is different from deciding what is an appropriate number 
of significant figures, which depends on context and requires judgement. These judgements are not 
uninformed – there are criteria that can be learned and that can support pupils’ justifications for their 
decisions. It is for this reason that the publication puts an emphasis on understanding the nature of 
the mathematical ideas, and not just the techniques.

Understanding the nature of data
One table of data may look much like another, with numbers in rows and columns. Even though two 
tables may show superficial similarities, there may be fundamental differences between the nature of the 
data in each table. Such differences are important, since the ways that data can be analysed and how they 
can be represented visually depend on what kind of data they are. These choices may be difficult. Drawing 
a bar graph requires a certain level of competence, but deciding whether a bar chart is appropriate for 
a particular set of data is harder. Such questions have generated a good deal of discussion during the 
development of this publication. While much of this may be beyond many pupils, understanding the 
nature of different types of data is important in designing appropriate classroom activities.
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There are a wide range of terms used in statistics to describe the nature of data. Chapter 1 provides 
a simplified account of the key ideas, with a focus on the distinctions that are helpful to make in 
science and on the questions that are useful to ask. It introduces the terms ‘continuous’, ‘discrete’ and 
‘categorical’, which are revisited in Chapter 3 in considering how to represent data. There are many 
ways in which data can be organised and represented – in different kinds of tables, pie charts, bar 
charts, line graphs, scatter graphs and so on. The choices depend on the nature of the data and the 
kinds of questions about the data that are of interest. A particular advantage of a computer is that it 
allows different choices of display to be easily explored.

An important distinction is made in Chapter 3 between ‘line graphs’ and ‘scatter graphs’. Although in 
one way they are similar, with the positions of data points determined by the scales on the horizontal 
and vertical axes, the nature of the data is fundamentally different. For example, experiments involving 
two continuous variables are particularly common in the physical sciences. Such experiments lead to 
‘line graph’ type data with variability due to measurement uncertainty. On the other hand, surveys 
that collect data for which the variability is due to differences between individuals are more common 
in the biological sciences, and lead to ‘scatter graph’ type data. The guidance in the publication puts a 
good deal of emphasis on the importance of distinguishing between these two sources of variability in 
data. The differences are discussed in Chapter 6, with each of these being followed up in more detail 
in Chapters 7 and 8.

Interestingly, when such examples have been discussed by teachers, some of the comments have been 
about how teachers in the biological and physical sciences have different practices when dealing with 
data and constructing graphs. However, it is not so much that different sciences approach data in 
different ways; rather, different sciences often deal with different kinds of data, and different kinds of 
data are analysed in different ways.

Assessment
It is beyond the scope of this publication to deal with questions such as how mathematics in science 
could be assessed, or what pupils of different ages might be expected to know and do. However, 
the emphasis in the publication on thinking about the importance of purposes and judgement has 
implications in considering what is useful to be assessed. For example, if a pupil is asked to plot a set 
of data values on a graph with pre-drawn axes and scales, and to draw a line of best fit, how could the 
graph be judged?

•	 The position of the data points on the graph 
This requires the pupil to use values in a table and to read each of the scales correctly, putting a 
mark at each of the appropriate points on the graph. The positioning of the points is a matter 
of being ‘correct’ or ‘incorrect’. Other such examples where there are ‘right’ and ‘wrong’ answers 
include rounding a value to a given number of significant figures, evaluating an expression and 
calculating the gradient of a straight line on a graph.

•	 The choice of the line of best fit 
While there may be some very obvious ‘bad lines of fit’, it is very unlikely that there would be 
a unique ‘line of best fit’: the choice requires judgement. Deciding on the position of a straight 
line, or whether to draw a straight line or a curve, or whether to include the origin, involves 
thinking about the meaning of the data and depends on the context. Other examples involving 
the use of judgement include deciding on an appropriate number of significant figures for a 
calculated value, choosing what kind of chart or graph to draw, and identifying which data 
values should be considered as outliers.
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•	 The symbols used for plotting the data points 
This is a matter of convention, and there are various arguments for favouring one type of 
symbol over another. Pupils may meet different conventions in different published sources so 
they should be aware of this. However, while it is important for a publisher to have a consistent 
house style in a publication, it should not be a matter of importance for pupils to follow any 
particular convention. Other examples include the use of brackets or the solidus with units in 
the axis labels on a graph, or the use of words or letters for variables in a formula.

In assessing what pupils can do, it is important to distinguish between their competence in using 
particular techniques and the quality of their reasoning about how to use them. While there are no 
‘hard-and-fast rules’ for how to draw a line of best fit or for the appropriate number of significant 
figures of a calculated value, this does not mean that ‘anything goes’. This publication emphasises the 
kinds of considerations to be taken into account in order to make sensible judgements.

Process of development of this publication
The ASE began this project in summer 2014, after gaining funding from the Nuffield Foundation. 
The work of the project was informed by the advice of a steering group, and successive drafts of this 
publication were reviewed by a panel of science and mathematics educators with expertise in this area, 
and feedback obtained from a variety of groups of science teachers. During the project, discussions 
took place with representatives of the awarding organisations, who have been supportive of the 
approaches taken in this publication. An important consideration was that the recommendations in 
this publication should be realistic in practice, so the concluding stage of the process was a review 
of the draft guidance by a large panel of teachers before the production of the final publication. The 
time and effort spent by so many people in providing advice over the course of the project is much 
appreciated, and the quality of the publication has improved greatly as a result of it.

Further references on terminology and conventions
The following publications in particular were used to inform the use of terminology and conventions 
in this publication, and the definitions in the glossary.
1.	 The Language of Measurement: Terminology Used in School Science Investigations (2010). Hatfield: 

Association for Science Education. ISBN 978 0 86357 424 5. 
This publication contains a glossary, and selected terms and definitions from it are also included 
in the glossary of The Language of Mathematics in Science. Although there is common ground, 
duplication is avoided and the two publications should be seen as complementary.

2.	 Signs, Symbols & Systematics: The ASE Companion to 16–19 Science (2000). Hatfield: Association 
for Science Education. ISBN 978 0 86357 312 6. 
This publication is the definitive guide to a wide range of factual information related to 11–19 
science education (and not just the 16–19 range suggested by the title). Of particular relevance 
to the areas covered by The Language of Mathematics in Science are sections on SI units, physical 
quantities, values of constants, and so on.

3.	 Mathematics Glossary for Teachers in Key Stages 1 to 3 (2014). National Centre for Excellence in 
the Teaching of Mathematics. 
Many of the definitions in the glossary of The Language of Mathematics in Science are based on 
the NCETM glossary, as well as on the earlier QCA glossary for key stages 1 to 4, from which 
the NCETM version was adapted. It is available from the NCETM website (www.ncetm.org.uk/
public/files/17308038/National+Curriculum+Glossary.pdf ).

https://www.ncetm.org.uk/public/files/17308038/National+Curriculum+Glossary.pdf
https://www.ncetm.org.uk/public/files/17308038/National+Curriculum+Glossary.pdf
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Overview of chapters

Chapter 1  Collecting data

1.1	 Measuring and counting
1.2	 Measurement, resolution and significant figures
1.3	 Characteristics of different types of data
1.4	 Naming different types of data
1.5	 Where do data come from?

Key words: quantitative data, qualitative 
data, quantity, value, unit, resolution, scale, 
significant figures, range, variable, continuous, 
discrete, categorical, integer, experiment, survey, 
independent variable, dependent variable, 
control variable, factor, time series, raw data, 
primary data, secondary data

Chapter 2  Doing calculations and representing values

2.1	 Calculations and units
2.2	 Fractions and decimals
2.3	 Rounding and significant figures
2.4	 Calculating means
2.5	 Index notation and powers
2.6	 Dealing with very large and very small values
2.7	 Approximations and orders of magnitude

Key words: unit, quantity, compound measure, 
base unit, derived unit, variable, decimal, 
fraction, significant figures, round, integer, 
recurring decimal, decimal place, mean, 
arithmetic mean, index notation, index, power, 
exponent, square, cube, square root, cube root, 
reciprocal, unit prefix, standard form, standard 
index form, scientific notation, power of 10, 
order of magnitude, approximation, estimate

Chapter 3  Choosing how to represent data

3.1	 Using tables to collect and present data
3.2	 Using tables to process data
3.3	 Presenting data visually
3.4	 Charts showing a quantity categorised by one factor
3.5	 Charts showing a quantity categorised by two factors
3.6	 Line graphs and scatter graphs: two related quantities
3.7	 Bar charts and line graphs

Key words: variable, unit, raw data, categorical, 
discrete, continuous, factor, frequency, 
frequency table, grouped data, two-way table, 
pie chart, bar chart, grouped bar chart, stacked 
bar chart, independent variable, dependent 
variable, data point, horizontal axis, vertical axis, 
line graph, gradient, time series, scatter graph

Chapter 4  Drawing charts and graphs

4.1	 The important features of a chart or a graph
4.2	 Choosing the axes
4.3	 Choosing the range of each axis
4.4	 Ranges and scales
4.5	 Choosing a good scale
4.6	 Labels and units
4.7	 Plotting points and finding values
4.8	 Reading scales

Key words: line graph, bar chart, scatter graph, 
independent variable, dependent variable, time 
series, axis, horizontal axis, vertical axis, x-axis, 
y-axis, origin, range, scale, tick mark, tick mark 
label, axis label, unit, data point, coordinate, 
x-coordinate, y-coordinate

Chapter 5  Working with proportionality and ratio

5.1	 Meaning of proportional
5.2	 Proportionality and visual representation
5.3	 Interpretation of gradient
5.4	 Proportionality and algebraic representation
5.5	 Proportional relationships in science
5.6	 Ratios
5.7	 Proportional reasoning and ratios
5.8	 Percentages
5.9	 Scale drawings and images

Key words: proportional, directly proportional, 
line graph, origin, gradient, slope, horizontal 
axis, vertical axis, x-axis, y-axis, x-coordinate, 
y-coordinate, rate, constant, constant of 
proportionality, reciprocal, inverse, inversely 
proportional, ratio, percentage, scale, scale 
drawing, scale factor, linear dimension
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Chapter 6  Dealing with variability

6.1	 Where does variability come from?
6.2	 Variability and measurement uncertainty
6.3	 Variability in a population of individuals
6.4	 Displaying larger sets of values
6.5	 How big is a typical value?
6.6	 How much do the values vary?
6.7	 Comparing shapes of distributions
6.8	 Are there any unusual values?
6.9	 Basic ideas in probability
6.10	 Estimating risks
6.11	 Interpreting reports about risk

Key words: variability, random error, true value, 
uncertainty, population, sample, distribution, 
histogram, batch, class interval, frequency, 
average, mean, arithmetic mean, median, mode, 
spread, range, quartile, interquartile range, box 
plot, outlier, anomaly, probability, independent 
events, combined events, risk

Chapter 7  Looking for relationships: line graphs

7.1	 Types of relationship and shapes of line graphs
7.2	 Developing a descriptive language
7.3	 Gradients and rates of change
7.4	 Lines of best fit: linear relationships
7.5	 Interpolation and extrapolation on a line graph
7.6	 Origin and intercepts: the meaning of where a fitted line 

starts
7.7	 When a straight line does not fit all the points

Key words: line graph, variable, linear, linear 
relationship, non-linear, gradient, origin, 
intercept, proportional, rate, line of best fit, 
interpolation, extrapolation, outlier

Chapter 8  Looking for relationships: batches and scatter graphs

8.1	 Different kinds of relationship
8.2	 Populations and samples
8.3	 Analysing a batch of data
8.4	 Dealing with more than one batch of data
8.5	 Comparing batches of data
8.6	 Judging whether a difference is significant
8.7	 Relationships between variables: scatter graphs and 

correlation
8.8	 Drawing a line of best fit on a scatter graph

Key words: population, sample, random 
sample, batch, variability, stem-and-leaf 
diagram, histogram, box plot, median, quartile, 
range, interquartile range, outlier, percentile, 
scatter graph, variable, correlation, line of best fit

Chapter 9  Scientific models and mathematical equations

9.1	 Equations, formulae and expressions
9.2	 Variables, constants and coefficients
9.3	 Operations and symbols
9.4	 Calculations using formulae: order of operations
9.5	 The real-world meaning of a formula
9.6	 Rearranging formulae involving addition and subtraction
9.7	 Rearranging formulae involving multiplication and 

division 
9.8	 Rearranging other formulae 
9.9	 Calculations without formulae
9.10	 Use of ‘calculation triangles’
9.11	 Mathematical equations and relationships in science
9.12	 Graphs of quantities against time: gradients
9.13	 Graphs of rates against time: area under the line

Key words: equation, algebraic equation, 
formula, expression, variable, constant, 
coefficient, brackets, order of operations, 
subject of a formula, proportional, directly 
proportional, constant of proportionality, 
linear relationship, linear equation, inversely 
proportional, exponential relationship, inverse 
square relationship, line graph, rate, intercept, 
gradient, tangent, area under the line (on a 
graph)

Chapter 10  Mathematics and the real world

10.1	 Mass and weight
10.2	 Length, area and volume
10.3	 Scale factor, cross-sectional area and surface area
10.4	 Circles and spheres
10.5	 Scalars and vectors: distance and displacement
10.6	 Movement of objects: speed and velocity
10.7	 Gradients of lines on speed–time and velocity–time 

graphs
10.8	 Area under the line on speed–time and velocity–time 

graphs

Key words: mass, weight, area, volume, 
square, cuboid, cube, scale drawing, scale 
factor, linear dimension, cross-sectional area, 
surface area, surface area : volume ratio, radius, 
diameter, circumference, scalar, vector, distance, 
displacement, speed, velocity, gradient, 
distance–time graph, displacement–time graph, 
speed–time graph, velocity–time graph, area 
under the line (on a graph)
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Science is built, fundamentally, on observations of the world around us. In pure mathematics, 
numbers are often treated as abstract; however, in science, numbers are associated with values 
related to the real world. So, in thinking about the use of mathematics in science, a fitting 
place to start is to look at the nature of data collection. 

1.1	 Measuring and counting
A very obvious distinction about the types of data that can be collected is between 
quantitative data and qualitative data. As an example, take the data that could be collected 
about the pupils in a class. Measuring the heights of the pupils would produce quantitative 
data, while their eye colours would be qualitative data.

As its name suggests, quantitative data relate to a quantity. In this case, the quantity is 
‘height of pupil’ and, for each pupil, there is a value for this quantity. The values are not just 
numbers. For example, if the height of a pupil is 119 cm then the value consists of a number 
(119) and a unit (cm). So, any calculation done on the value (119 cm) must be done on the 
number and the unit. Handling units in calculations is an important aspect of science. (See 
Section 2.1 Calculations and units on page 14 for further details.)

By contrast, the eye colours of pupils represent qualitative data – there are no numbers 
involved. If the numbers of pupils with each eye colour are counted, then each eye colour 
becomes a category with an associated numerical value. Thus, quantitative data can be 
generated from qualitative data. The ‘eye colour of a pupil’ is an attribute of an individual and 
is an example of qualitative data; the ‘numbers of pupils with each eye colour’ is a variable 
consisting of quantitative data.

So, there are two basic ways of collecting quantitative data – by measuring and by counting.

1.2	 Measurement, resolution and significant figures
The values of measurements are limited by the resolution of the measuring instrument 
whether analogue (e.g. a ruler) or digital (e.g. an electronic balance). It is easy to do a 
calculation to get a number such as 2.3913043 displayed on a calculator; it is not possible, 
however, to use a school stopclock to record a value for a time such as 2.3913043 seconds. To 
do this would require an instrument with higher resolution.

Key words: quantitative data, qualitative data, quantity, value, unit, resolution, scale, 
significant figures, range, variable, continuous, discrete, categorical, integer, experiment, 
survey, independent variable, dependent variable, control variable, factor, time series, 
raw data, primary data, secondary data.
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A ruler generally has a scale that is divided into millimetres. When measuring with a 
ruler, it is usual to give the result to the nearest millimetre, since it is difficult by eye to 
judge fractions of a millimetre. The height of a sheet of A4 paper, as measured by a ruler, 
is 297 mm. This value has three significant figures – the number of digits that contribute 
information about the size of the value.

The number of significant figures is related to the uncertainty in the measurement. Reporting 
a measurement as ‘297 mm’ does not imply that the ‘true value’ is exactly 297 mm, but that 
it is more likely to be nearer 297 mm than to 296 mm or 298 mm. (For more details about 
uncertainty, see Section 6.2 Variability and measurement uncertainty on page 51.)

Changing the units of measurement of a measured value does not change the number of 
significant figures. For example, the height of an A4 sheet of paper, 297 mm, could also be 
expressed as 29.7 cm or 0.297 m, or even as 0.000 297 km. All of these values have three 
significant figures, even though they have different numbers of digits after the decimal 
point. However, measuring a 2p coin with a ruler gives a result for the diameter of 26 mm. 
The resolution of the ruler is still the same, though in this case the value has only two 
significant figures.

In general, reading an analogue scale by eye will ideally produce a value with three significant 
figures, though sometimes it may have only two.

On a digital instrument, the values are read directly from the display. On kitchen scales 
reading to the nearest 1 g, the mass of a litre carton of orange juice might be displayed as 
1082 g (four significant figures), while the mass of a 2p coin shows as 7 g (one significant 
figure). Again, the resolution of the instrument is the same, but the number of significant 
figures is different. For the coin, a more accurate value would be obtained using a balance 
with a greater resolution: such an instrument would tend to have a smaller range. For 
example, kitchen scales that read to the nearest 1 g might measure up to 5000 g, while a 
‘pocket-sized’ balance reading to the nearest 0.001 g might only read up to 20 g. On the latter 
balance, the mass of a 2p coin might then be displayed as 7.154 g (four significant figures).

The ‘zero’ digit has an important role in expressing the number of significant figures for a 
value. If another coin is put on the same balance, and the display shows 7.200 g, then this 
should be recorded as ‘7.200 g’ and not ‘7.2 g’. Writing ‘7.200 g’ indicates that its mass was 
measured to the nearest ‘0.001 g’, whereas writing ‘7.2 g’ suggests that a balance with a lower 
resolution that only measured to the nearest 0.1 g was used. 

On some digital instruments (e.g. multimeters), it is possible to change the range depending 
on the value being measured, in order to increase the resolution and obtain the maximum 
number of significant figures.

Note that the term ‘range’ is applied in a number of different ways in science – to measuring 
instruments, to the axes on a graph, and to the values of a set of data. (See the Glossary for 
teachers on page 119 for further details.)

The number of significant figures is an indication of the precision of a value. Thinking 
about the number of significant figures of a measured value is important when rounding 
the values obtained in calculations. The decision of how many significant figures should be 
given depends on the numbers of significant figures in the starting values. (See Section 2.3 
Rounding and significant figures on page 16.)

For further information about the terminology related to values, units and measuring 
instruments, see the ASE/Nuffield publication The Language of Measurement.
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1.3	 Characteristics of different types of data
Statisticians have developed further distinctions beyond ‘quantitative’ and ‘qualitative’ 
to describe different types of data. For secondary school science, knowing the statistical 
terminology is not necessary, but it is worth being aware of some key characteristics of 
different types of data. The distinctions are important because different types of data can be 
analysed and represented in different ways.

Figures 1.1–1.4 show some examples of data. Each of the columns in these tables represents a 
variable. The following questions identify key characteristics about the variables:

•	 Can the data be put into a meaningful order? 
Quantitative data can always be put into a meaningful order (from low values to high 
values), but qualitative data may or may not. For example, the days of the week (in 
Figure 1.2) form a sequence, while the pupils’ eye colours (brown, blue, etc.) have no 
particular order.

•	 Can the data have any value or are there distinct categories? 
There are always distinct categories for qualitative data. However, quantitative data 
can sometimes take on any value (e.g. length and temperature), but may have a small 
number of possible numerical values (often integer values, such as number of trees – 
there can be 3 trees or 4 trees but not 3.7 trees).

•	 Are the numerical differences between values meaningful? 
Numerical differences between measured quantities and counts are always meaningful. 
For example, in Figure 1.1, pupil 1 is 158 cm tall and pupil 2 is 148 cm tall: the 
difference, 10 cm, is meaningful as it represents how much taller one is than the other. 
Differences are also meaningful for the rainfall data and for temperature. However, 
although the column ‘Pupil’ contains the numbers 1, 2, 3 . . ., these are simply labels, 
and the differences between them have no meaning.

•	 Are the ratios of values meaningful? 
In Figure 1.4, it would make sense to talk in terms of the ratios of the numbers of 
trees; for example, ‘6 trees’ are twice as many trees as ‘3 trees’. Comparing the sizes 
of values in this way would also be meaningful for heights of pupils and for rainfall. 

Figure 1.2  Rainfall

Day Rainfall (mm)

Sunday   0

Monday   8

Tuesday 13

Wednesday   0

etc.

Figure 1.1  Pupils in a class

Pupil Height (cm) Eye colour

1 158 brown

2 148 blue

3 142 brown

4 168 brown

etc.

Figure 1.4  Tree survey

Quadrat Number of trees

A 7

B 3

C 6

D 4

Figure 1.3  An object cooling

Time (s) Temperature (°C)

  0 59.5

30 54.3

60 51.2

90 48.4

etc.
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However, for temperature it would not make sense to talk about 20 °C being twice as 
hot as 10 °C. The choice of the zero on the Celsius scale is arbitrary, and so ratios of 
temperatures measured in degrees Celsius are not meaningful.

The technical terms that are used for such scales of measurement are interval scales 
(differences between values are meaningful) and ratio scales (ratios of values are meaningful). 
A ratio scale includes the properties of an interval scale (so differences between values on a 
ratio scale are also meaningful).

1.4	 Naming different types of data
There are several terms used in statistics to describe the characteristics of different types of 
data, but three terms are commonly used in secondary school mathematics: continuous, 
discrete and categorical. These terms may also be encountered in secondary school science 
but they are used less frequently than in mathematics.

•	 Continuous data: These are numerical data for which the values can take on any value 
within a certain range. Measurement produces continuous data; for example, the heights 
of pupils or the temperatures of an object.

•	 Discrete data: These are also numerical data but they can only take on certain values. 
Counting produces discrete data. Counts have whole number or integer values; for 
example, number of trees in a survey area.

•	 Categorical data: These are not numerical values so they cannot be ordered but they can 
be sorted into categories; for example, the eye colour of pupils.

The differences between continuous and discrete data may be less marked than their 
definitions suggest. Although in principle it is possible for a measurement of length or 
temperature (continuous data) to have any value, in reality a measurement will have a limited 
number of significant figures. For example, in Figure 1.1, the height of the first pupil is 
measured as 158 cm. It is quite likely that, in a sufficiently large group, there will be other 
pupils whose heights will also be measured as 158 cm. Similarly, in a survey counting a small 
sample of trees (discrete data), there may only be a few possible values of counts (1, 2, 3, 
etc.), but there could be many possible values when counting large populations. Thus, in 
practice, it may be that continuous and discrete data are treated rather similarly, for example 
in deciding whether to draw a bar chart or a line graph (see Section 3.7 Bar charts and line 
graphs on page 32).

Note that the term ‘discontinuous data’ is sometimes used in school science; the intention is 
usually to mean categorical data but the term is ambiguous and can be confusing, since there 
are two ways that data can be ‘not continuous’ (discrete and categorical).

1.5	 Where do data come from?
Many scientific studies are concerned with gathering evidence about the relationships 
between variables, and can be broadly characterised as experiments or surveys.

Pupils need to be aware that both of these terms have particular meanings in science, which 
may be different from the way they are used in everyday life. An ‘experiment’ may often 
be seen as an unstructured and random exploration, unlike the organised and purposeful 
‘experiment’ of science. In everyday language, the term ‘survey’ often suggests a study 
involving a questionnaire to find out about people’s opinions – a meaning that is also 
common in the mathematics classroom. In science, the term has a broader meaning.
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In the simplest kind of experiment, the experimenter changes just one variable (the 
independent variable) and observes the effect on another variable (the dependent variable). 
All other variables (control variables) are kept constant by the experimenter. 

Surveys are used in more complex situations where it is harder to manipulate the variables, so 
data are collected by observing the outcomes in various conditions. There may be a number 
of independent variables, as well as other unknown variables that affect the outcomes. 
Sometimes, there is no clear distinction between independent and dependent variables, and a 
survey just explores whether relationships exist without thinking in terms of causation.

An independent variable is often referred to as a factor, particularly when it is a categorical 
variable. (Note that the term factor is also used in mathematics with an entirely different 
meaning. See the Glossary for teachers on page 119.)

In experiments or surveys where changes are observed over time, the data are called a time 

series and time is treated as the independent variable.

So, a variable may be described as ‘continuous, discrete or categorical ’, and as ‘independent, 
dependent or control ’. The first set of terms relate to the nature of the data of a variable, while 
the second set refers to the role of the variable in the context of an investigation.

Note that, in mathematics, the term variable refers to a quantity that can take on a range of 
values and is often represented by a letter (e.g. x, y) in an algebraic equation. Much of science 
is concerned with algebraic modelling and uses the term ‘variable’ in the same way. However, 
in science, the term ‘variable’ is also used in situations where an algebraic relationship is not 
known. (See Section 9.2 Variables, constants and coefficients on page 88.)

Data collected directly from experiments or surveys, before calculations are performed, are 
called raw data. If the data are collected directly by the user, these are called primary data. If 
the data are obtained indirectly from other sources reporting raw or processed data (such as 
books, articles or web pages), these are secondary data.
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2	 Doing calculations and 
representing values

The value of a quantity such as temperature or mass is represented by a number and a unit. 
This chapter focuses on the ways that units are used in calculations and on how values are 
represented. When pupils are using values in calculations, it is important that they are also 
thinking about the meaning of what they are calculating (see Section 9.5 The real-world 
meaning of a formula on page 93).

2.1	 Calculations and units
Doing calculations on values involves paying attention to the manipulation of not just the 
numbers but the units as well. Addition and subtraction of values can only be done if they 
are expressed in the same units. For example, it may make sense to add the masses of two 
objects together (say 15 g and 20 g) to give a total mass (35 g). It would not make sense 
to add the mass (in g) of one object to the length (in m) of another. Mass and length are 
different kinds of quantity and so cannot be added together. However, it would be possible to 
add the values of a mass (in g) to another mass (in ounces) if they are converted to a common 
unit, since they are the same kind of quantity.

If some water at 60 °C is added to some water at 20 °C, it does not make sense to add the 
temperatures together, even though they are the same kind of quantity expressed in the same 
units. The masses of the water can be added together because mass is an extensive property 
(dependent on the size of the system), but temperature is an intensive property (independent 
of the size of the system) and cannot be added in this way. It would, however, make sense 
to calculate the temperature rise of an object (in °C) by subtracting an initial temperature 
(in °C) from a final temperature (in °C).

Multiplication and division may involve different units. For example, if a ball rolls 8 metres 
along the ground in 2 seconds, its average speed can be calculated. Here, the division has 
been done in two steps for emphasis – first the units and then the numbers.

= = = =
distance travelled 8 m 8average speed  m/s 4 m/s

time taken 2 s 2

Key words: unit, quantity, compound measure, base unit, derived unit, variable, 
decimal, fraction, significant figures, round, integer, recurring decimal, decimal place, 
mean, arithmetic mean, index notation, index, power, exponent, square, cube, square 
root, cube root, reciprocal, unit prefix, standard form, standard index form, scientific 
notation, power of 10, order of magnitude, approximation, estimate.
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In mathematics, a quantity such as speed (e.g. in metres per second) is called a compound 

measure – it involves two measures of different types; in this case, distance and time. 
In science, the unit ‘metres per second’ or ‘m/s’ would be called a derived unit. In the 
International System of Units (SI), there are seven base units (metre, kilogram, second, 
ampere, kelvin, mole, candela) from which all other units are derived. Some derived units are 
expressed in terms of the base units (such as m/s); other derived units are given special names 
(e.g. the unit of force is derived from the base units but is given the name ‘newton’).

In science, it is good practice always to include units as part of the calculation, in order to 
keep track of what the numbers mean. An example of a multiplication involving a derived 
unit would be to calculate the mass of 10 cm3 of ethanol (density 0.79 g/cm3). 

= ´

= ´
=

3 3
 

 

mass volume density

10 cm 0.79 g/cm
7.9 g

Multiplying 10 by 0.79 gives 7.9, and multiplying cm3 by g/cm3 gives g (grams). Since this is 
an appropriate unit for mass, it provides a check that the calculation has been done correctly. 
It also acts as a check that a formula has been written down or rearranged correctly.

Note that not all quantities have units. Those that are derived from a ratio of the sizes of two 
quantities do not have units, for example relative atomic mass or refractive index.

Calculations involving chemical amounts (in moles) can often lead to confusion over the use 
of units. For example: What is the mass of 2 mol of water molecules? The relative molecular 
mass of water is 18, but it is not correct to say that the mass is 2 ́  18= 36 g, since the units 
are not consistent (the relative molecular mass has no units). It is the molar mass of water 
(18 g/mol) that is needed for the calculation.

= ´
= ´
=

mass chemical amount molar mass
2 mol 18 g/mol
36 g  

In post-16 physics, this kind of checking of consistency of units becomes even more 
important, and is known as dimensional analysis.

Note that, in mathematics, units in calculations are handled differently. In the above 
formulae, the variables (mass, volume, and so on) represent values with units, so these are 
part of the calculations. In mathematics, however, the variables in equations do not have 
units. For example, if the mass of an object is being calculated from an algebraic formula, one 
might represent the mass as m kg. Here, the variable ‘m’ represents just a number. If the result 
of the calculation is m= 6 then the mass of the object is 6 kg. Teachers and pupils need to be 
aware of this difference in the way that units are handled in mathematics and science.

2.2	 Fractions and decimals
In scientific calculations, intermediate and final values are usually expressed as decimals 
rather than fractions. In mathematics, pupils learn to add, subtract, multiply and divide 
fractions, though this is not much used in science.

One reason for this is that, when dealing with integers in mathematics, it makes sense to be 
able to manipulate the number to produce a result expressed as a fraction that also involves 
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integers (below left). This fraction is exact, whereas expressing this value as a decimal would, 
in this case, not be exact. Using numbers in this way also helps to develop an understanding 
of how algebraic expressions can be manipulated (below right). 

+
+ = =

5 3 20 9 29
3 4 12 12 	

+
+ =

a c ad bc
b d bd

This kind of algebraic manipulation of fractions would not be used in secondary science, 
however, when doing calculations with measured values. The values obtained from 
measurements are not exact integers, so the emphasis is on convenience of calculation. For a 
multi-step problem, it is generally easier to calculate intermediate values at each step, rather 
than to build up an expression, leaving the calculation to the last step.

2.3	 Rounding and significant figures
The values used in a calculation may not all have the same number of significant figures. 
For a measured value, the number of significant figures is an indication of the precision of 
measurement. For a calculated value, the number of significant figures should reflect the 
precision of the values used in the calculation (see Section 1.2 Measurement, resolution and 
significant figures on page 9).

A rule of thumb for rounding
A useful rule of thumb is to round the result to the same number of significant figures as the 
measured value with the fewest significant figures. This means that the precision of the result 
is determined by the least precise value used in the calculation.

For example, to calculate the distance travelled in 2.73 seconds by a ball with velocity 1.4 m/s:

distance =  velocity ́  time =  1.4 m/s ́  2.73 s = 3.822 m =  3.8 m

The number obtained by multiplying 1.4 ́  2.73 is 3.822, but this is then rounded to 
two significant figures (3.8). This is because the number in the calculation with the fewer 
significant figures is 1.4 (two significant figures). Rounding means replacing the calculated 
value with the nearest number with the appropriate number of significant figures; if the 
calculated value is halfway between two values with the appropriate number of significant 
figures then it is rounded up (e.g. 3.85 rounded to two significant figures is 3.9). Older 
pupils may also be introduced to the convention of writing ‘(to 2 s.f.)’ after the final value 
in the above calculation. This makes explicit how the result was rounded, and also avoids the 
implication that two unequal values are equal (i.e. 3.822 m =  3.8 m). 

Distinguishing between measured values and integers
Integers need to be handled in a different way. For example, the height of an A4 sheet of 
paper is 297 mm. The height of 2 sheets placed end-to-end is 594 mm (2 ́  297 mm). This 
is not rounded to 600 mm, since the value ‘2’ is not treated as having only one significant 
figure. It is an integer, and it is exactly 2 (in a sense, it has an infinite number of significant 
figures: 2.000 000 000 . . .). The ‘number of sheets’ is a ‘count’ and not a ‘measurement’.

Recurring decimals
Sometimes, in calculations involving division, the numerator divides exactly by 
the denominator (e.g. 18 / 2.4= 7.5). If not, the result will be a recurring decimal 
(e.g. 26 / 2.4 = 10.833 333 33 . . .), even if the recurring pattern is not apparent because the 
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calculator display does not have sufficient digits to show this (e.g. 26 / 2.3 11.304 347 83 . . .). 
In mathematics, recurring decimals can be represented by placing dots over the digits; this 
convention is not needed in science, since such results are rounded to an appropriate number 
of significant figures.

The meaning of zeros in a value
It is important to pay attention to the way the zero digit is used to indicate the number of 
significant figures for measured values and for the results from calculations. For example, if 
a ball with a velocity 2.0 m/s travels for 4.32 seconds, the distance is found by multiplying 
these two values together. The calculated value is 8.64 m. The zero digit in ‘2.0 m/s’ means 
that this value has two significant figures. Rounding the calculated value to two significant 
figures gives 8.6 m.

Similarly, if a ball with a velocity 1.4 m/s travels for 2.86 seconds, multiplying these values 
together gives a result for the distance of 4.004 m. Rounding this to two significant figures 
gives 4.0 m. Writing this as 4 m would mean something different – it would have only one 
significant figure and would indicate less precision in the result.

The use of the zero digit in numbers that do not have a decimal point can be ambiguous. For 
example, while stating a distance as 5837 m implies that it has been measured or calculated 
to the nearest metre, it is not so clear what 6300 m means. Does it mean that it has only 
been measured to the nearest 100 m? (This would imply that the true value is nearer to 
6300 m than to 6200 m or 6400 m.) Or to the nearest 10 m? Or to the nearest 1 m? Without 
knowing the context, it is difficult to interpret what these values mean. One solution is to re-
express the value in a different unit. For example, in this case, if km were used, the difference 
between 6.300 km and 6.3 km would be clear. Another solution is to express the value using 
standard form (see Section 2.6 Dealing with very large and very small values on page 20).

Using judgement when adding values 
Judgement is necessary in using the rule of thumb when adding values, as the two examples 
below illustrate.

If the mass of a coin is 7.17 g then the mass of two such coins would be best expressed as 
14.34 g (and not rounded to 14.3 g, even though the original value only had three significant 
figures). In this case, it makes sense to keep the number of decimal places the same, since 
this reflects the resolution of the measuring instrument.

Another example where it makes sense to consider decimal places rather than the number 
of significant figures would be in finding the total mass of two objects with masses of 1.24 g 
and 141.5 g. These values suggest that the first object was measured using a higher resolution 
instrument (to the nearest 0.01 g) than the second object (to the nearest 0.1 g). When the two 
values are added together the result should be given to the nearest 0.1 g (the same as for the 
lower resolution instrument), and so the total mass is written as 142.7 g.

Using judgement when multiplying values 
Judgement is also needed in using the rule of thumb when multiplying values. Suppose 
you are calculating the masses of two blocks of aluminium, of volume 3.6 cm3 and 4.2 cm3. 
Multiplying by the density (2.7 g/cm3) gives 9.72 g and 11.34 g respectively. All of the starting 
values have two significant figures, so applying the rule of thumb for the first block means 
that the calculated value is rounded to 9.7 g. This seems sensible.
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However, applying the rule for the second block means rounding the value to 11 g, The only 
difference between the two calculations is that one gives a result a little under 10 g and the 
other a little over 10 g, though the first is rounded to the nearest 0.1 g and the second to the 
nearest 1 g. Here it may be more sensible to round the result for the second block to 11.3 g. 
Caution is needed to avoid over-rounding in such cases.

Thinking about the purposes of rounding
The above guidance applies to the final result of a calculation: in a multi-stage calculation, 
it is useful to retain an extra significant figure for the intermediate values that are calculated, 
in order to avoid rounding errors accumulating. On the other hand, rounding values to just 
one significant figure can be helpful if they are being used in a calculation to give an order of 
magnitude estimate.

Summary
There are no hard-and-fast rules for deciding on an appropriate number of significant figures. 
One difficulty is that this is linked to measurement uncertainty – a complex and subtle idea. 
However, that does not mean that ‘anything goes’, and the above discussion indicates some of 
the considerations for making sensible choices.

It is important that pupils should be able to identify the number of significant figures in a 
value, and to know how to round to a given number of significant figures. This is a matter 
of being correct or incorrect. Assessing how well they can round to appropriate numbers of 
significant figures involves finding out their reasons for doing so.

2.4	 Calculating means
The mean of a set of values is the sum of the values divided by the number of values. (Strictly 
speaking, this is called the arithmetic mean, to distinguish it from other means such as the 
geometric mean.) The arithmetic mean is so widely used that, in science, it is usually referred 
to as just the ‘mean’. A common situation in school science for finding a mean is when taking 
repeated measurements in an experiment. The use of the term ‘average’ as an alternative to 
‘mean’ should be avoided, since ‘average’ can be ambiguous. (See Section 6.5 How big is a 
typical value? on page 55 for further details about means and averages.)

The same considerations about significant figures apply to the calculation of means. For 
example, using the ‘rule of thumb’ when calculating the mean of the three measured values 
7.5 cm, 7.8 cm and 7.6 cm gives a result of 7.6 cm. The sum of these numbers divided by 3 is 
7.633 333, and the final result is given to two significant figures, since the original values have 
two significant figures. Note that the value ‘3’ is an integer, and is exactly 3, so it is not treated 
as having one significant figure.

For a larger number of values, it may be justified for a mean to have a greater number of 
significant figures than the values of the data. For example, suppose you have 10 grapes and a 
balance reading to the nearest 1 g. The best way of finding the mean would be to put them all 
on the balance to get a total mass and divide by 10. But suppose instead that the mass of each 
grape is measured individually: 6 g, 5 g, 6 g, 7 g, 5 g, 5 g, 6 g, 6 g, 5 g and 6 g. The total is 57 g, 
and the mean would be 5.7 g. 

Here it may be better not to round to 6 g, but to leave it as 5.7 g. The full explanation for this 
involves thinking about the possible range for the true value. Since the balance reads to the 
nearest 1 g, each measured value could be higher or lower than the true value by up to 0.5 g 



The Language of Mathematics in Science: A Guide for Teachers of 11–16 Science	 19

Chapter 2: Doing calculations and representing values

(e.g. a reading of 5 g means the true value is closer to this than to 4 g or 6 g, and lies between 
4.5 g and 5.5 g). It is possible, though unlikely, that all the random measurement effects were 
working in the same direction. If all 10 measurements were too high, their total could be 
higher than the true value of the total by a maximum of 5 g (i.e. 10 ́  0.5 g); if they were all 
too low, their total could be lower than the true value by a maximum of 5 g. Thus the true 
value of the total lies between 52 g and 62 g. These extremes, however, are very unlikely. It is 
much more probable that there will be some cancelling out of these random effects, with 57 g 
being the best guess of the total mass.

Another example of finding a mean is given in Section 6.2 Variability and measurement 
uncertainty on page 51, where the calculated value is rounded to fewer significant figures 
than the measured values, because there is a good deal of variability in the measurements.

These examples illustrate the difficulty in 11–16 science of providing hard-and-fast rules or 
full justifications for how to round to appropriate numbers of significant figures; it is best left 
to judgements about what seems to make good sense.

2.5	 Index notation and powers
Pupils are most likely to come across index notation for the first time in the context of 
expressing the square of a number, for example that 3 ́  3 can be expressed as 32 (and spoken 
as ‘3 squared’). In this example, the number ‘2’ is called the index (or power or exponent), 
and, in speech, the expression can also be read as ‘3 to the power of 2’. This can be extended 
to the cube of a number (e.g. 33, ‘3 cubed’ or ‘3 to the power of 3’) and to higher indices 
(e.g. 34, 35, 36, etc.).

The use of indices also applies to units. For example, the area of a piece of paper of size 20 cm 
by 10 cm can be expressed in units of cm2.

area of paper =  20 cm ́  10 cm =  20 ́  10 ́  cm ́  cm =  200 cm2

Note that the unit is better pronounced ‘square centimetres’ rather than ‘centimetres 
squared’. Saying ‘200 square centimetres’ is unambiguous and gives a more direct sense of the 
area: saying ‘200 centimetres squared’ could be interpreted as either 200 cm2 or (200 cm)2, 
i.e. as 40 000 cm2. Other common units used in science involving indices are m2 (‘square 
metres’), cm3 (‘cubic centimetres’), dm3 (‘cubic decimetres’) and m3 (‘cubic metres’).

The symbol √ is used for the square root of a number. For example, the square root of 9 can 
be written as √9 . This has two values, 3 and -3 (also written as ± 3), since both 32 and (-3)2 
are equal to 9. Similarly, the symbol for a cube root is 3√ , so 3√27= 3. (Note that 27 has 
only one cube root, since (-3)3 is -27 and not 27). 

Roots may also be expressed using fractional indices, so the square root of 9 would be written 
as 9½, the cube root of 27 would be written as 27⅓, and so on. In science, the use of fractional 
indices may be encountered post-16, though it is not common at secondary level. The notion 
of a fractional index might seem odd at first: while 32 can be explained as meaning 3 ́  3, 
what could 3½ mean? One way of thinking about this is to consider what happens to indices 
in multiplication. For example, 32 ́  33= 35 (3 ́  3 ́  3 ́  3 ́  3); the two indices are added 
together. In a similar way, 3½ ́  3½= 31 (i.e. 3). So, 3½ is the number which when multiplied 
by itself gives 3; in other words, it is the square root of 3.

The reciprocal of a number can also be represented using index notation. For example, the 
reciprocal of 2 is ½ , which can also be written as 2−1. Similarly, the reciprocal of 22 (i.e. 
the reciprocal of 4, which is ¼) can be represented as 2−2. Again, negative indices are not 
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commonly used in secondary school science, except for powers of 10 as described below. 
Post-16 students would be expected to be familiar with the scientific convention of using 
negative indices in units, such as for velocity (m s−1) or density (g cm−3), but for younger 
pupils in science it is clearer if these are expressed as m/s or g/cm3.

Like fractional indices, negative indices can also seem strange. Here, thinking about 
what happens during division can help. For example, 100 000 ¸ 1000= 100 can be 
written as 105¸ 103= 102. Here the second index is subtracted from the first. Similarly, 
1000¸ 100 000= 1/100 can be written as 103¸ 105= 10−2.

2.6	 Dealing with very large and very small values
The standard unit of length is the metre but lengths that are much larger or much smaller 
may be better expressed in different units using unit prefixes. For example:

•	 the thickness of a coin (0.0015 m) is more clearly expressed in millimetres (1.5 mm)

•	 the distance between two towns (135 000 m) is more clearly expressed in kilometres 
(135 km).

This avoids having too many zeros, either before or after the decimal point. Large numbers 
can be written by leaving a space (not a comma) between every three digits, which makes 
them easier to read, though still not as clear as changing units.

In the SI system, there are unit prefixes covering a wide range of sizes, creating a ‘ladder’ 
with each step differing from the next by a factor of 1000 (or 103). Figure 2 shows the most 
commonly used unit prefixes.

In addition, two other prefixes are centi- (a hundredth) and deci- (a tenth), though these are 
only likely to be met as the centimetre (1 cm= 0.01 m) and the cubic decimetre (1 dm3=
0.001 m3= 1000 cm3).

Changing units can also help in comparing the sizes of values. For example, it is not easy to 
compare the masses of two objects expressed as 417 g and 1.24 kg. If they are both expressed 
in the same units, as 417 g and 1240 g, it may be easier to see that the second mass is about 
three times the first.

It is a common misconception that ‘longer’ numbers are bigger – the rule works for integers, 
but pupils may apply this inappropriately to any number. For example, when given the 
masses of two objects as 0.317 g and 0.52 g, pupils may think the first value is bigger (‘317’ is 
bigger than ‘52’). Converting the values to 317 mg and 520 mg makes the relative size clearer.

Figure 2.1  Prefixes for SI units

Unit 
prefix

Unit prefix 
symbol

Multiplying factor Example

Unit name Unit symbol

tera- T 1 000 000 000 000 or 1012 terawatt TW

giga- G 1 000 000 000 or 109 gigawatt GW

mega- M 1 000 000 or 106 megawatt MW

kilo- k 1 000 or 103 kilowatt kW

– – 1 or 100 watt W

milli- m 0.001 or 10−3 milliwatt mW

micro- µ 0.000 001 or 10−6 microwatt µW

nano- n 0.000 000 001 or 10−9 nanowatt nW
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Another way of expressing very large or small values is to use standard form (also referred to 
as standard index form or scientific notation). For example:

127 000 in standard form becomes 1.27 ́  105

In standard form, the first number has just one digit to the left of the decimal point (i.e. it is 
greater than or equal to 1 and less than 10); this is multiplied by a power of 10.

One advantage of standard form is that it can make it easier to compare the orders of 

magnitude of very large or very small values. For example, 5.18 ́  108 seconds is about 
100 times bigger than 5.91 ́  106 seconds. Written in full, the eye would be distracted by 
all the zeros; unless they were arranged one above the other, it would be hard to make the 
comparison. However, in order to make comparisons using standard form, pupils do need to 
be confident in using the notation. If they are not then comparison may be easier with the 
the numbers written in full.

Another advantage of using standard form is that it always makes clear the number of 
significant figures. An example given earlier was the problem of knowing the number of 
significant figures in the value 6300 m, and how this can be made clear by changing the units. 
Expressing in standard form is another way of showing this; for example, as 6.3 ́  103 m (two 
significant figures) or 6.300 ́  103 m (four significant figures).

It can also be easier to do calculations using standard form; for example, in multiplying 
3.7 ́  104 by 1.81 ́  107. A calculator can be used to multiply 3.7 by 1.81 to give 6.697. 
Multiplying the powers of 10 can then be done mentally (104 ́  107= 1011) to give a final 
answer of 6.697 ́  1011. Using the numbers written in full on a calculator could easily lead to 
mistakes being made. 

Multiplying 3.7 ́  104 by 7 ́  107 in the same way gives 25.9 ́  1011 but this result is not in 
standard form, since 25.9 is greater than 10. When expressed in standard form, the result is 
2.59 ́  1012.

Adding and subtracting numbers in standard form is trickier. The easiest way is to express 
them as ‘ordinary numbers’ and then carry out the calculation. The result can then be 
changed back to standard form.

Note that, when writing large numbers, it is now generally preferred in science to use a space 
rather than a comma as a ‘thousand separator’, i.e. to write 50 000 rather than 50,000. No 
separator is needed for numbers less than 10 000, i.e. 5000 rather than 5 000. The comma, 
however, is still the norm for everyday use in the UK. In many other countries, the comma 
has a different meaning: it is used as the ‘decimal mark’ instead of the dot used in the UK 
(e.g. 13,63 instead of 13.63).

2.7	 Approximations and orders of magnitude
It is a useful habit when doing calculations to ask ‘Does this make sense?’ There are two 
things to consider – one is about the process of calculation and the other is about the ‘real-
world’ values produced.

In both science and mathematics, pupils should be encouraged to use approximations so that 
they can check, for example, that when they use a calculator the output is roughly what they 
expect. They can do this by rounding all of the numbers in a calculation to one significant 
figure. For example, if the calculation is to multiply 36.9 by 6.2 then this becomes 40 ́  6=
240. The actual result is 228.78, which is close to the estimate, but if they get 22 878 then 
they know that something has gone wrong. This number is the wrong order of magnitude.
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It is also important to think about whether a calculated value makes sense as an order of 
magnitude related to the real world; for example, a leaf of mass 3.97 kg, a temperature rise 
of water of 250 °C, or a car travelling down a motorway at 90 metres per hour. The first two 
values are far too large and the third is far too small. Being able to make such judgements 
requires pupils to have a sense of the magnitude of a range of units. Such an understanding 
can start early, for example with units of mass and length related to familiar objects, 
extending later to a wider range of values and to other quantities such as energy and power.
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3	 Choosing how to represent data

Tables, charts and graphs are all ways of representing data, and they can be used for two 
broad purposes. The first is to support the collection, organisation and analysis of data as part 
of the process of a scientific study. The second is to help present the conclusions of a study to 
a wider audience. The choices of how to represent data are influenced by:

•	 the nature of the data

•	 the kinds of questions about the data that are of interest.

3.1	 Using tables to collect and present data
When constructing a table of data, one consideration is what to put in the rows and what to 
put in the columns. A common form of data in science involves two related variables, for 
example the temperature of a cooling object against time (Figure 3.1).

Figure 3.1  Temperature of a cooling object

(a)

Time (s) Temperature (°C)

  0 59.5

30 54.3

60 51.2

90 48.4

etc.

(b)

Time (s) 0 30 60 90 etc.

Temperature (°C) 59.5 54.3 51.2 48.4

The reason that the table in Figure 3.1a works better for collecting data is because it can be 
easily extended downwards – it is not so easy to extend Figure 3.1b. However, it also has 
the advantage that, by aligning the values for each quantity vertically, it is easier for the eye 
to scan down and compare the sizes of values. This is harder to do when the eye has to scan 
across a horizontal arrangement of values. When making tables intended for presenting data, 
this is a particular consideration, and more complex tables may require careful thought.

The units of the values are included at the top of the column along with the variable name, so 
that the rest of the table just shows the numbers. Note that the units are enclosed in brackets, 

Key words: variable, unit, raw data, categorical, discrete, continuous, factor, frequency, 
frequency table, grouped data, two-way table, pie chart, bar chart, grouped bar chart, 
stacked bar chart, independent variable, dependent variable, data point, horizontal 
axis, vertical axis, line graph, gradient, time series, scatter graph.
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for example ‘Temperature (°C)’. This is the most usual convention in secondary school 
science and mathematics for the column headers in tables of data and for labelling axes on 
graphs. Another convention is to write ‘Temperature in °C’. In scientific literature and in 
post-16 studies, a common convention is to use the ‘/’ symbol (the solidus, or forward slash), 
for example ‘Temperature/°C)’. This is intended to indicate that the values of temperature 
are divided by the unit °C to produce ‘pure numbers’. This is a subtle idea, which is why 
brackets are more suitable for secondary science. In addition, pupils need to be familiar with 
the ‘brackets’ convention, since it is widely used on tables and charts intended for a general 
audience, including those produced by scientific organisations.

Since pupils may come across graphs using different conventions from a variety of sources 
(in books, on the internet and so on), teachers may wish their pupils to be familiar with 
all of them. In any case, it is important to check which convention they will meet in 
their examinations.

Care should be taken, however, if the pupils are not familiar with the use of negative indices 
in units, which is also usually not introduced until post-16 (see Section 2.5 Index notation 
and powers on page 19). Thus, while both ‘velocity (m/s)’ and ‘velocity/m s−1’ are acceptable 
and considered to be correct, ‘velocity/m/s’ is ambiguous and confusing and it should thus 
be avoided.

3.2	 Using tables to process data
Tables are also used to support the processing of raw data in various ways. One example is 
when further columns are added to a table to carry out calculations on existing columns. 
Figure 3.2 shows a table in which two of the columns (Mass and Volume) are used to collect 
measured values, while the final column (Density) contains calculated values.

Another example is when raw data from one table are counted to produce further tables 
showing the values of the counts. For example, in a survey of the pupils in a class, counting 
the raw data on eye colour (Figure 3.3a) produces a ‘table of counts’ (Figure 3.3b). Such a 
table is called a frequency table. In mathematics, a frequency refers to the number obtained 
by counting objects or events. Thus, if there are 7 pupils with eye colour ‘blue’ then this 
category has a frequency of 7.

The column ‘Eye colour’ in Figure 3.3a contains categorical data. The raw data in this table 
also include ‘shoe sizes’, and these are discrete data. It would also be possible to count the 
number of pupils with each shoe size but there might be quite a large number of categories. 
Here, it may be more convenient to use fewer categories, by choosing some groups of shoe 
sizes, and to count the numbers in these. Figure 3.3c is also a frequency table but here is 
showing grouped data.

Figure 3.2  Calculating density from mass and volume

Object Mass Volume Density

  
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It is also possible to create groups from continuous data; this is discussed in Section 6.4 
Displaying larger sets of values on page 53.

Figure 3.3  Survey of pupils in a class

(a)  Table of raw data

Pupil Eye colour Shoe size

1 brown 1½

2 blue 5

3 brown 5½

4 brown 4

etc.

(b)  Frequency table

Eye colour Number of pupils

Blue

Brown

Green

(c)  Frequency table (grouped data)

Shoe size Number of pupils

2½ or less

3 to 5

5½ or more

(d)  Two-way table

Eye colour Shoe size

2½ or less 3 to 5 5½ or more

Blue

Brown

Green

The tables in Figure 3.3b and 3.3c each show the numbers of pupils categorised by one 
independent variable or factor (eye colour or shoe size).

The table in Figure 3.3d shows the numbers of pupils categorised by both of these factors. 
This is also a frequency table, and is called a two-way table. Such tables are useful to see if 
two factors are related – for example, if there were a large number of pupils with green eyes 
and large shoe sizes, then this might suggest a relationship between the two factors (though 
perhaps unlikely in this example).

3.3	 Presenting data visually
The most common types of charts and graphs for presenting data are pie charts, bar charts, 
line graphs and scatter graphs. As with tables, visual displays of data can be useful both in 
the analysis of data and in the presentation of the results.

Displaying data visually can be particularly useful in comparing the relative sizes of values and 
in looking for relationships between variables. Visual displays are less useful in communicating 
actual values: people tend to focus on the patterns rather than the numbers. To emphasise 
actual values, a table is more effective.

Choosing what charts or graphs to draw is influenced by the nature of the data. The rest 
of this section will look at the different kinds of display that can be used to represent the 
following commonly found data structures:

•	 A quantity categorised by one factor 
(e.g. numbers of people in a sample categorised by eye colour)

•	 A quantity categorised by two factors 
(e.g. UK energy consumption categorised by type of fuel and year)

•	 Two related quantities 
(e.g. the extension of a spring related to the mass suspended from it).
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Blue

Brown

Green

Another type of data is simply a set of values for a single quantity (e.g. the heights of a sample 
of pupils). The analysis of this kind of data and the displays used (histograms and boxplots) are 
discussed later. (See Chapter 6 Dealing with variability on page 50 and Chapter 8 Looking 
for relationships: batches and scatter graphs on page 75.)

3.4	 Charts showing a quantity categorised by one factor
Figure 3.4a shows a quantity (number of people in a sample) categorised by one factor (eye 
colour). Because it is meaningful to add these values to give a total, one possible display is a 
pie chart (Figure 3.4b).

An advantage of a pie chart is that it helps to show the size of each category relative to the 
whole (the category ‘green eyes’ represents nearly a quarter of the sample), but it is not always 
easy to compare the sizes of the sectors to each other (the sizes of ‘blue’ and ‘brown’ look 
very similar). Although pie charts are often found in everyday media reports, they are not 
much used in scientific publications. In mathematics, pupils construct their own pie charts 
and consider how they are used by others: constructing a pie chart draws on and develops a 
number of ideas, including data handling, working out percentages and doing calculations 
on angles.

Another possibility is a bar chart (Figure 3.4c). Here, it is much easier to compare the sizes 
of the three values (‘blue’ is a bit bigger than ‘brown’, and nearly twice as much as ‘green’). 
However, now it is harder to judge the fractional size of each category compared with the whole.

The choice of whether to use a pie chart or a bar chart depends on whether the focus is on the 
sizes of the categories relative to the whole or relative to each other.

Figure 3.4  Eye colours of a sample of people

(a)  Table of data

Eye colour Number

Blue   63

Brown   58

Green   35

Total 156

(c)  Bar chart
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(b)  Pie chart

Figure 3.5 also shows a quantity (temperature) categorised by one factor (colour of surface). 
In this case, it is not meaningful to add these values to give a total. A pie chart would not 
make sense, so only a bar chart is possible.

Eye colours of a 
sample of people

Eye colours of a 
sample of people
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Figure 3.5  Temperatures of different coloured surfaces exposed to sunlight

Surface colour Temperature (°C)

White 24.6

Grey 39.3

Black 43.5

0

10

20

30

40

50

White Grey Black

Te
m

pe
ra

tu
re

 (°
C

)

Surface colour

In this example, it is not meaningful to compare the ratios of the values since the Celsius 
temperature scale has an arbitrary zero (i.e. it does not make sense to say that the value for 
‘black’ is nearly twice as big as that for ‘white’). However, comparing the heights of the bars 
does make it possible to compare the differences in temperature.

3.5	 Charts showing a quantity categorised by two factors
Figure 3.6 shows a quantity (UK annual energy consumption) categorised by two factors 
(type of fuel and year). Here it is meaningful to add the values for the types of fuel together 
to give the total energy consumption for a year but it is not useful to add the values for each 
year together. There are a variety of different types of display that could be drawn for these 
data, as illustrated in Figure 3.7.

Figure 3.7a shows two pie charts, one for each year, and drawn to the same size. As with 
a single pie chart, the focus is on comparisons of the parts with the whole for each year; 
however, it is not easy to compare the two to see how the proportions have changed from one 
year to the next. To represent the actual sizes of the values, the two pie charts could be drawn 
with different sizes, the area of each whole pie representing the value of the total. However, it 
can be very difficult to judge the relative sizes of segments from different sized pies and with 
different angles. In general, using multiple pie charts to make comparisons is often not very 
effective. 

Multiple pie charts are rarely used in scientific publications. However, in mathematics 
lessons, drawing pie charts of different sizes can be a helpful way for pupils to think about 
how the sizes of the values depend on both the size and the fraction of the total.

There are a number of choices of bar chart when the quantity is categorised by two factors. 
Figures 3.7b and 3.7c are both examples of a grouped bar chart (also known as a clustered 

Temperatures of different coloured 
surfaces exposed to sunlight

Figure 3.6  UK annual energy consumption

Million tonnes of oil equivalent (mtoe)

1975 2005

Solid fuel 73.7 39.9

Petroleum 85.0 78.2

Gas 35.1 94.3

Bioenergy and waste 0 4.2

Primary electricity* 8.5 19.8

Total 202.3 236.4
* from nuclear, hydro, wind, solar



Chapter 3: Choosing how to represent data

The Language of Mathematics in Science: A Guide for Teachers of 11–16 Science	 28

bar chart). By showing a ‘profile’ for each year, Figure 3.7b makes it easier to compare the 
contributions of different fuels within each year, but harder to look at the change for each 
fuel over this period. By contrast, Figure 3.7c emphasises the change for each fuel over the 
period, but it is not as easy to see the contributions within a single year. The choice of which 
chart to draw depends on what comparison is of more interest.

Since the values for each type of fuel can be added to give a total, it is possible to draw a 
stacked bar chart (also known as compound bar chart). Two forms of the chart are shown: 

Figure 3.7  A variety of charts showing UK annual energy consumption

(a)  Pie charts
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(c)  Grouped bar chart 2
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(d)  Stacked bar chart 1
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(e)  Stacked bar chart 2
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(f)  Horizontal bar chart

0 20 40 60 80 100

Solid
fuel

Petroleum

Gas

Bioenergy
and waste

Primary
electricity

Energy consumption (mtoe)

Annual energy consumption in the UK

1975

2005

2005
Solid fuel

Petroleum

Gas

Bioenergy
and waste

Primary
electricity

Annual energy consumption in the UK (mtoe)



The Language of Mathematics in Science: A Guide for Teachers of 11–16 Science	 29

Chapter 3: Choosing how to represent data

one where the total height of each bar corresponds to the total quantity (Figure 3.7d) and the 
other where the values are expressed as percentages and the total height of each bar represents 
100% (Figure 3.7e). Since the total energy consumption for each year is fairly similar, in 
this case the two charts are not very different from each other. In a sense, a stacked bar chart 
is a compromise between a pie chart and a grouped bar chart. It allows the sizes of parts 
to be compared with the whole (though not as easily as in a pie chart) and the parts to be 
compared with each other (though not as easily as in a grouped bar chart). This technique 
can also be applied to line graphs to show a number of different quantities (a stacked line 
graph), but these are often hard to interpret.

Finally, although all of the bar charts shown so far have been drawn with vertical bars, 
any type can be drawn with horizontal bars, for example as in Figure 3.7f. The eye may 
sometimes find it easier to make comparisons of bars by looking down a chart (in the same 
way that it is easier to compare numbers when written in a column).

3.6	 Line graphs and scatter graphs: two related quantities
The tables of data in Figures 3.8, 3.9 and 3.10 all have data about two related quantities. 
There are a number of similarities between these three sets of data and the way they can be 
displayed, but also some important differences.

All of the examples can be thought of as showing a dependent variable plotted against an 
independent variable:

•	 outside temperature against time 
(time is normally considered as the independent variable)

•	 extension of a spring against mass added 
(the mass added is the independent variable, since this is what is being changed in the 
experiment)

•	 mean lifespan for mammals against mean heart rate 
(here, the hypothesis is being tested that heart rate affects lifespan, so heart rate is being 
treated as the independent variable).

For each value of the independent variable, there is a corresponding value of the dependent 
variable. These values are used to plot a series of data points on a graph; the independent 
variable has been plotted along the horizontal axis and the dependent variable along the 
vertical axis.

So far, all three sets of data have been treated the same – the differences arise when deciding 
whether to draw a line and how to draw it.

Figure 3.8 shows an example of a line graph. It shows the change in outside temperature 
over a 24-hour period. Lines have been drawn connecting each data point to the next one. The 
assumption being made here is that each value for outside temperature is the actual value for 
that particular time and place, and so the line that is drawn passes through all the points. This 
example is a time series, and the graph shows the variation of a quantity over time (a trend). 
The gradient of each line segment gives an indication of how quickly the quantity changes 
from one value to the next. For example, the temperature changed more slowly over the first 
3-hour period than over the second.
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Figure 3.8  Outside temperature over a 24-hour period starting at midnight

Time (hours) Outside temperature (°C)

  0   8.7
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Care needs to be taken, however, in thinking about what happens between the measured 
values. Although the dependent variable (temperature) varies continuously throughout, and 
lines are used to connect the data points, these lines are not intended to indicate how the 
dependent variable changes between the data points. 

The graph in Figure 3.9 is also an example of a line graph. It shows how the extension of a 
spring depends on the mass suspended from it. Here, instead of connecting all the points 
together, a single straight line has been drawn that passes as close as possible to the points 
(though not necessarily through them), called a line of best fit. This type of line graph is very 
common in science. The assumption here is that there is a simple relationship between the 
two variables such that the true values all lie on the line: if all of the values could be measured 
with complete accuracy then every value of mass added would have a value of the extension 
of the spring that would lie on the line. In practice, not all the data points fit on this line 
because of measurement uncertainties.

Figure 3.9  Effect of adding slotted masses to a spring
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Unlike the previous type of line graph (in Figure 3.8), a fitted line is intended to indicate how 
the dependent variable changes between the data points. (For further details, see Section 7.5 
Interpolation and extrapolation on a line graph on page 70).

In both Figure 3.8 and Figure 3.9, the nature of the data suggests that for every value of 
the independent variable there will be a single value for the dependent variable. This is the 
justification for drawing a line to represent the relationship between the variables.

This is in contrast to the data in Figure 3.10, which shows the relationship between mean 
heart rate and mean lifespan for various types of mammal. This is a scatter graph and no line 
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has been drawn since the data are of a different type to the previous example involving the 
spring. The pattern of data points suggests that mammals with a higher heart rate (and higher 
metabolic rate) tend to have shorter lifespans. In this example, it is easy to imagine that 
there might be two types of mammal with the same mean heart rate but different lifespans 
(i.e. the same values for the independent variable but different values for the dependent 
variable). Unlike the example about the spring (Figure 3.9), there is not a unique value of the 
dependent variable for every value of the independent variable. A line thus cannot be drawn 
that passes through or close to all the points.

Figure 3.10  Mean heart rates and lifespans for some selected types of mammal
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Since there does appear to be some kind of relationship between these two variables, it would 
be possible to draw a fitted line. The pattern of data points on the graph suggests that a curve 
would be a better fit than a straight line. This curve would have a different meaning to the line 
in Figure 3.9. Most of the data points would not be close to the fitted curve, and this would 
not be due to measurement uncertainty but to the variability between different types of mammal.

Note that, in mathematics, when pupils encounter ‘line graph’ it is usually of the type 
shown in Figure 3.8, and they would talk of connecting each pair of data points with a ‘line 
segment’. In science, ‘line graphs’ of the type shown in Figure 3.9 are more common. When 
pupils draw a line of best fit in mathematics, it is more likely to be for the type of data shown 
in Figure 3.10 (a ‘scatter graph’) rather than for that shown in Figure 3.9, and the fitted 
line would be straight. In science lessons, pupils are expected to judge whether a line of fit 
should be straight or curved. (See Section 8.8 Drawing a line of best fit on a scatter graph on 
page 85.)

Care in using terminology also needs to be taken when drawing a line graph or a scatter 
graph with a computer spreadsheet, such as Excel. For example, in drawing a line graph such 
as that in Figure 3.9, the spreadsheet needs to have two columns of data, with values of mass 
and extension. Selecting these and choosing a ‘line graph’ option produces two lines – one 
for each variable plotted sequentially. Confusingly, whenever you want to plot one variable 
against another, a ‘scatter graph’ option needs to be selected, whether you want to draw a line 
on the graph or not.

Sometimes it can seem that different sciences have different ways of handling data. The 
important point made in this section is that different types of data are handled in different 
ways. Since biology, chemistry and physics are often concerned with different types of data, 
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each subject has different emphases on how to handle such data. Experiments involving 
a relationship between two continuous variables are found across the sciences but are a 
particular focus in physics. Such experiments lead to ‘ line graph’ type data. Surveys involving 
data collection from individuals in a population are more common in biology than other 
subjects and lead to ‘scatter graph’ type data.

The distinction between these two fundamentally different kinds of data is very important. 
How such data are analysed is discussed in more detail in the following two chapters:

•	 Chapter 7 Looking for relationships: line graphs on page 64

•	 Chapter 8 Looking for relationships: batches and scatter graphs on page 75.

3.7	 Bar charts and line graphs
Examples of bar charts and line graphs have been discussed earlier. The bar chart shown in 
Figure 3.5 has a horizontal axis that represents a categorical variable. The line graph shown in 
Figure 3.9 has a horizontal axis that represents a continuous variable. But what about data where 
the independent variable is a discrete variable? Is a bar chart or a line graph better for this kind 
of data? This is a question that can generate a good deal of disagreement. (See Section 1.4 
Naming different types of data on page 12 for further details about the meanings of these 
terms, in particular the discussion about the similarities between continuous and discrete data.)

Figure 3.11 is an example of data that has a discrete independent 
variable. It shows the voltage measured across a number of 
batteries (or ‘cells’) connected in series. (The ones used were in 
fact standard D-size alkaline cells marked ‘1.5 V’.) 

The independent variable here is ‘number of cells’ – it is a 
discrete variable. A discrete variable has similarities to both a 
continuous variable and a categorical variable:

•	 It is similar to a continuous variable in that they are both 
numerical (the numbers are related to the sizes of the 
values).

•	 It is similar to a categorical variable in that there are no ‘in-between’ values (e.g. ‘1½ 
cells’ has no meaning).

If ‘number of cells’ is treated as being more similar to a categorical variable then a bar 
chart would be plotted, as shown in Figure 3.12a; if it is treated as being more similar to a 
continuous variable then a line graph would be plotted, as shown in Figure 3.12b.

Figure 3.12  Bar chart and line graph of the same data
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Figure 3.11  Voltage across 
cells connected in series

Number of 
cells

Voltage (V)

1 1.55

2 3.11

3 4.66

4 6.22

5 7.78

6 9.33
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One of the arguments used for saying that a bar chart should be drawn for data like these is 
that it is not meaningful to draw a line when the values on the horizontal axis are discrete. 
This is because there are no ‘in-between’ values for the number of cells, and interpolation 
would not make sense (see Section 7.5 Interpolation and extrapolation on a line graph on 
page 70). For example, it is possible to read from the graph that to get a voltage of 5 V you 
would need about 3¼ cells – and you can’t have 3¼ cells.

The problem with this argument is that, although there is nothing to stop anyone trying 
to interpolate on a line graph, it is not compulsory. By analogy, the relationship could be 
represented as an equation:

voltage =  number of cells ́  1.55 V

There is nothing here to indicate that ‘number of cells’ is a discrete variable and that only 
integer values could be substituted. In the same way, if we draw a line graph then we can use 
our judgement to decide on those aspects of the representation that may be useful (e.g. the 
gradient of the line) and those that may not (e.g. interpolation).

If there are only two values (for 1 and 2 cells) then a bar chart would certainly be better, since 
there are too few data points to draw a line. However, with a sufficient number of values, a 
line graph has many advantages.

•	 Seeing patterns:  It is easier to see whether the points lie on a straight line or a curve, 
and to identify how close the measurements are to the fitted line.

•	 Interpreting gradients:  It is possible to calculate the gradient of the line, and to obtain 
an equation for the relationship. The gradient is meaningful here because the numerical 
differences between values on the horizontal axis are meaningful (it is an interval scale).

•	 Interpolating:  Although interpolation may not be meaningful if all of the discrete 
values have been measured, it does makes sense if there are ‘missing’ values. For 
example, if there are voltages for 1, 2, 5, 10, 15 and 20 cells then interpolation could be 
used to estimate voltages for other numbers of cells.

•	 Extrapolating:  The line can be extrapolated to estimate values beyond the measured 
range.

•	 Dealing with ‘missing values’:  On a bar chart it may be difficult to represent discrete 
data consisting of a small number of values spread across a wide range. For example, 
suppose there are only five values corresponding to 5, 25, 50, 100 and 200 on the 
horizontal axis. One could either show these as equally spaced bars and lose the visual 
appearance of the relationship or show the whole scale from 1, 2, 3 . . . 200, creating 
five narrow bars and a lot of spaces. Plotting a line graph would show the relationship 
more clearly. When the values of a discrete variable become very large (e.g. populations 
of countries), it certainly makes sense to treat these in the same way as continuous 
variables.

•	 Meaningful non-integer values:  It is not possible to have, say, 2.5 rubber bands but, 
in an experiment involving forces related to rubber bands, interpolation may be 
meaningful. ‘Number of rubber bands’ becomes in effect a ‘surrogate’ unit of force, 
which is a continuous variable.

Line graphs of discrete data can also be useful when lines are used to join each data point 
to the next one. Such graphs are used to plot the properties of elements (e.g. their melting 
points) against atomic number (a discrete variable). Non-integer values of atomic number 
certainly have no meaning, but a bar chart of these data would be more difficult to interpret. 
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A line graph emphasises the peaks and the troughs in the data, and makes the periodic 
patterns stand out. 

Sometimes, what appears to be a discrete variable on the horizontal axis actually reflects an 
underlying continuous variable. For example, ‘Monday’, ‘Tuesday’, ‘Wednesday’, and so on, 
look like discrete values. However, if the vertical axis represents a person’s heart rate recorded 
at 8.00 am on each day then this really reflects a set of samples along a continuous scale. In 
principle, the heart rate could have been taken every hour or every minute. Similarly, if the 
vertical axis represents daily rainfall then this is just a conventional way of recording the 
total amount of this quantity. Again, in principle, the total could be recorded every hour 
or every minute. In both of these cases, a line graph could be justified, since the gradients 
are meaningful.
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4	 Drawing charts and graphs

When drawing a chart or a graph, it is important to think about the purpose of doing this 
and what kind of display is best for representing the data. This aspect is discussed in the 
previous chapter (Chapter 3 Choosing how to represent data). This chapter focuses on the 
details of constructing good charts and graphs, and how to make appropriate choices when 
drawing them by hand on graph paper.

4.1	 The important features of a chart or a graph
Line graphs are very common in science. Figure 4.1 shows an example of a line graph that 
will be used to illustrate its important features but the principles also apply to bar charts and 
scatter graphs.

Figure 4.1  An example of a line graph
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The following is a summary of the points that need to be considered during the construction 
of a line graph. These are discussed in more detail later in this section.

Key words: line graph, bar chart, scatter graph, independent variable, dependent 
variable, time series, axis, horizontal axis, vertical axis, x-axis, y-axis, origin, range, 
scale, tick mark, tick mark label, axis label, unit, data point, coordinate, x-coordinate, 
y-coordinate.
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When drawing a chart or a graph, it is important to think about the purpose of doing this 
and what kind of display is best for representing the data. This aspect is discussed in the 
previous chapter (Chapter 3 Choosing how to represent data). This chapter focuses on the 
details of constructing good charts and graphs, and how to make appropriate choices when 
drawing them by hand on graph paper. 

4.1 The important features of a chart or a graph 
Line graphs are very common in science. Figure 4.1 shows an example of a line graph that 
will be used to illustrate its important features but the principles also apply to bar charts 
and scatter graphs. 

Figure 4.1 An example of a line graph 
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On each axis, there are tick marks (the little marks at regular intervals along each axis). 
There are also tick mark labels (the numbers next to the tick marks). Note: for a bar chart, 
one of the axes (usually the horizontal axis) would have only category labels instead. 

 

Each axis has a label. The axis label shows the name of the variable and its unit. 

 

The data points are the values plotted on the graph. Each point is plotted using a pair of 
values for the variables (the x-coordinate and the y-coordinate). Note: for a bar chart, the 
bars would be plotted using the data values for each category. 

 

A line is drawn, which either connects all of the data points or is a line of best fit. A scatter 
graph may show just the data points or it may also have a line of best fit. 

 

Finally, a graph should have a title that describes what the graph is showing. If there is 
more than one line on the graph, there will also need to be a legend or key to show what 
each line represents.  

 

4.2 Choosing the axes 
A graph shows the relationship between two variables. Usually, the independent variable is 
plotted on the horizontal axis or x-axis and the dependent variable on the vertical axis or y-
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4.2	 Choosing the axes
A graph shows the relationship between two variables. Usually, the independent variable is 
plotted on the horizontal axis or x-axis and the dependent variable on the vertical axis or 
y-axis (Figure 4.2a). Many graphs in science show how something varies over time – a time 

series graph. Here, time is treated as the independent variable (Figure 4.2b).

Figure 4.2  Choosing the axes
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When plotting a graph by hand, another choice is how to orient the graph paper – 
landscape (wide) or portrait (tall). A landscape graph is nearly always better, especially if 
there is a lot of variation, as it is easier to identify the gradients. However, a portrait graph 
might suit rapidly increasing changes, for example exponential growth of bacteria or the 
rate of a chemical reaction or radioactive decay. 

4.3 Choosing the range of each axis 
The range of the axis refers to the lower and upper limits of the values shown on the axis. 
It needs to be chosen to cover the range of data. For the data shown in Figure 4.1, the 
values of time vary from 0 to 55 minutes and the temperature varies from about 25 to 
60 °C. One question is whether to include the origin (with both axes starting at zero). Many 
graphs include the origin but not all do. Sometimes the data can be shown more clearly 
when an axis does not start at zero. For example, Figure 4.3 shows how the shape of a line 
can be shown more clearly by changing the range of the vertical axis. 

Figure 4.3 Choosing whether to include the origin 
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When plotting a graph by hand, another choice is how to orient the graph paper – landscape 
(wide) or portrait (tall). A landscape graph is nearly always better, especially if there is a lot of 
variation, as it is easier to identify the gradients. However, a portrait graph might suit rapidly 
increasing changes, for example exponential growth of bacteria or the rate of a chemical 
reaction or radioactive decay.

4.3	 Choosing the range of each axis
The range of the axis refers to the lower and upper limits of the values shown on the axis. It 
needs to be chosen to cover the range of data. (Note that the term ‘range’ is here being used 
to refer both to the axis and to the data. Different uses of the term ‘range’ are explained in 
the glossary.) For the data shown in Figure 4.1, the values of time vary from 0 to 55 minutes 
and the temperature varies from about 25 °C to just over 60 °C. One question is whether to 
include the origin (with both axes starting at zero). Many graphs include the origin but not 
all do. Sometimes the data can be shown more clearly when an axis does not start at zero. For 
example, Figure 4.3 shows how the shape of a line can be shown more clearly by changing 
the range of the vertical axis.

Figure 4.3  Choosing whether to include the origin

(a)  With origin

The Language of Mathematics in Science (v3d, copy-editing) 4 

axis (Figure 4.1a). Many graphs in science show how something varies over time – a time 
series graph. Here, time is treated as the independent variable (Figure 4.2b). 

Figure 4.2 Choosing the axes 
(a) 

 

(b) 

 

When plotting a graph by hand, another choice is how to orient the graph paper – 
landscape (wide) or portrait (tall). A landscape graph is nearly always better, especially if 
there is a lot of variation, as it is easier to identify the gradients. However, a portrait graph 
might suit rapidly increasing changes, for example exponential growth of bacteria or the 
rate of a chemical reaction or radioactive decay. 

4.3 Choosing the range of each axis 
The range of the axis refers to the lower and upper limits of the values shown on the axis. 
It needs to be chosen to cover the range of data. For the data shown in Figure 4.1, the 
values of time vary from 0 to 55 minutes and the temperature varies from about 25 to 
60 °C. One question is whether to include the origin (with both axes starting at zero). Many 
graphs include the origin but not all do. Sometimes the data can be shown more clearly 
when an axis does not start at zero. For example, Figure 4.3 shows how the shape of a line 
can be shown more clearly by changing the range of the vertical axis. 

Figure 4.3 Choosing whether to include the origin 
(a) with origin 

 

Dependent 
variable 

Independent 
variable 

Time 

40 

20 

0 

(b)  Without origin

The Language of Mathematics in Science (v3d, copy-editing) 5 

(b) without origin 

 

It is possible to find graphs that are similar to Figure 4.3b but which use a convention to 
show that the range does not start at zero. Such graphs include the zero at the start of the 
axis but then use a ‘squiggly line’ or ‘zig-zag’ to indicate that part of the axis has been ‘cut 
out’. This convention is not used in scientific practice, and should be avoided in school 
science – the split scale can confuse pupils. When interpreting graphs, though, it is 
important for pupils to pay attention to the values on the scales and to know whether the 
graph starts at the origin or not. 
Figure 4.3b shows the variation in values more clearly, but the lack of an origin can be 
misleading. If the ratios of the values are meaningful then Figure 4.3a is better for 
comparing sizes. The striking difference between the shapes of these lines in this example 
illustrates the importance of identifying the range of each axis when interpreting a line 
graph. 
Note that in Figure 4.1 at the start of this chapter, the origin is included. Although it is not 
meaningful to compare the relative sizes of temperatures measured in °C, a value of 0 °C is 
convenient in this case for starting the vertical axis. 
Sometimes, the variables plotted on the axes include negative as well as positive values. 
Examples of such variables include temperatures measured in °C, velocity on a velocity–
time graph, or the potential difference across a component. In such cases, the origin would 
not be plotted at the bottom left of the graph but higher up or to the right or both. Values 
may be plotted above and below the horizontal axis, and to the left and the right of the 
vertical axis. An example of such a graph is shown in Chapter 10 (Figure 10.13b, a 
velocity–time graph for a ball thrown vertically upwards, on page xx). 

4.4 Ranges and scales 
The scale of an axis is how much each square on the graph paper represents. On the graph 
paper shown, each main division has 10 small squares. A scale must be chosen for each of 
the axes so that the range fits well on the graph paper. 

 

It is helpful if pupils first draw the axes on the graph paper, to ensure that there is sufficient 
space on the edges of the graph to put labels and values on the axes. They can then see how 
much space is available for representing the data. (Note that, for simplicity, the edges to 
the left and below the axes have not been indicated on the following diagrams.) 
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It is possible to find graphs that are similar to Figure 4.3b but which use a convention to 
show that the range does not start at zero. Such graphs include the zero at the start of the axis 
but then use a ‘squiggly line’ or ‘zig-zag’ to indicate that part of the axis has been ‘cut out’. 
This convention is not used in scientific practice, and should be avoided in school science 
– the split scale can confuse pupils. When interpreting graphs, though, it is important for 
pupils to pay attention to the values on the scales and to know whether the graph starts at the 
origin or not.

Figure 4.3b shows the variation in values more clearly, but the lack of an origin can be 
misleading. If the ratios of the values are meaningful then Figure 4.3a is better for comparing 
sizes. The striking difference between the shapes of these lines in this example illustrates the 
importance of identifying the range of each axis when interpreting a line graph.

Note that in Figure 4.1 at the start of this chapter, the origin is included. Although it is not 
meaningful to compare the relative sizes of temperatures measured in °C, a value of 0 °C is 
convenient in this case for starting the vertical axis.

Sometimes, the variables plotted on the axes include negative as well as positive values. 
Examples of such variables include temperatures measured in °C, velocity on a velocity–time 
graph, or the potential difference across a component. In such cases, the origin would not be 
plotted at the bottom left of the graph but higher up or to the right or both. Values may be 
plotted above and below the horizontal axis, and to the left and the right of the vertical axis. 
An example of such a graph is shown in Chapter 10 (Figure 10.13b, a velocity–time graph 
for a ball thrown vertically upwards, on page 117).
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4.4	 Ranges and scales
The scale of an axis is how much each square on the 
graph paper represents. On the graph paper shown, 
each main division has 10 small squares. A scale must 
be chosen for each of the axes so that the range fits 
well on the graph paper.

It is helpful if pupils first draw the axes on the graph 
paper, to ensure that there is sufficient space on the 
edges of the graph to put labels and values on the axes. They can then see how much space 
is available for representing the data. (Note that, for simplicity, the edges to the left of and 
below the axes have not been indicated on the following diagrams.)

Figure 4.4 shows the effect of choosing different scales for the horizontal axis. In Figure 4.4a 
the scale is appropriate but in Figure 4.4b the data are too squashed and in Figure 4.4c the 
data do not fit completely on the graph paper.

Figure 4.4  Fitting the range to the graph paper

(a)  Appropriate scale
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Figure 4.4 shows the effect of choosing different scales for the horizontal axis. In 
Figure 4.4a the scale is appropriate but in Figure 4.4b the data are too squashed and in 
Figure 4.4c the data do not fit completely on the graph paper. 

Figure 4.4 Fitting the range to the graph paper 
(a) 

 

(b) 

 

(c) 

 

4.5 Choosing a good scale 
Pupils find it hard to choose appropriate scales. As well as fitting the range to the graph 
paper, they need to avoid scales that make the values hard to read. A simple rule is that 
each large square (main division) should have a value of 1, 2 or 5 multiplied by some 
power of ten. Other values may be suitable, but this rule works well whether the main 
squares on the graph paper are divided into 5 or 10 sub-divisions. For this rule, each main 
square should have one of these values: 

 0.1 1 10 100 
etc. 0.2 2 20 200 etc. 

 0.5 5 50 500 
This makes it easier to work out the values of the small squares. For example, suppose the 
range of values to be plotted on the horizontal axis is from 2 metres to 14 metres. 
Figure 4.5 shows some possible scales following this rule. Here, the scale in Figure 4.5c 
would be the best choice. 

(b)  Too squashed
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Figure 4.4 shows the effect of choosing different scales for the horizontal axis. In 
Figure 4.4a the scale is appropriate but in Figure 4.4b the data are too squashed and in 
Figure 4.4c the data do not fit completely on the graph paper. 

Figure 4.4 Fitting the range to the graph paper 
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(b) 
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4.5 Choosing a good scale 
Pupils find it hard to choose appropriate scales. As well as fitting the range to the graph 
paper, they need to avoid scales that make the values hard to read. A simple rule is that 
each large square (main division) should have a value of 1, 2 or 5 multiplied by some 
power of ten. Other values may be suitable, but this rule works well whether the main 
squares on the graph paper are divided into 5 or 10 sub-divisions. For this rule, each main 
square should have one of these values: 

 0.1 1 10 100 
etc. 0.2 2 20 200 etc. 

 0.5 5 50 500 
This makes it easier to work out the values of the small squares. For example, suppose the 
range of values to be plotted on the horizontal axis is from 2 metres to 14 metres. 
Figure 4.5 shows some possible scales following this rule. Here, the scale in Figure 4.5c 
would be the best choice. 

(c)  Does not fit
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Figure 4.4 shows the effect of choosing different scales for the horizontal axis. In 
Figure 4.4a the scale is appropriate but in Figure 4.4b the data are too squashed and in 
Figure 4.4c the data do not fit completely on the graph paper. 

Figure 4.4 Fitting the range to the graph paper 
(a) 

 

(b) 

 

(c) 

 

4.5 Choosing a good scale 
Pupils find it hard to choose appropriate scales. As well as fitting the range to the graph 
paper, they need to avoid scales that make the values hard to read. A simple rule is that 
each large square (main division) should have a value of 1, 2 or 5 multiplied by some 
power of ten. Other values may be suitable, but this rule works well whether the main 
squares on the graph paper are divided into 5 or 10 sub-divisions. For this rule, each main 
square should have one of these values: 

 0.1 1 10 100 
etc. 0.2 2 20 200 etc. 

 0.5 5 50 500 
This makes it easier to work out the values of the small squares. For example, suppose the 
range of values to be plotted on the horizontal axis is from 2 metres to 14 metres. 
Figure 4.5 shows some possible scales following this rule. Here, the scale in Figure 4.5c 
would be the best choice. 

4.5	 Choosing a good scale
Pupils find it hard to choose appropriate scales. As well as fitting the range to the graph paper, 
they need to avoid scales that make the values hard to read. A simple rule is that each large square 
(main division) should have a value of 1, 2 or 5 multiplied by some power of ten. Other values 
may be suitable, but this rule works well whether the main squares on the graph paper are divided 
into 5 or 10 sub-divisions. For this rule, each main square should have one of these values:

	 0.1	 1	 10	 100
etc.	 0.2	 2	 20	 200	 etc.
	 0.5	 5	 50	 500

This makes it easier to work out the values of the small squares. For example, suppose the range 
of values to be plotted on the horizontal axis is from 2 metres to 14 metres. Figure 4.5 shows 
some possible scales following this rule. Here, the scale in Figure 4.5c would be the best choice.

Figure 4.5  Different scales for plotting the range 2 metres to 14 metres

(a)  1 division = 1 metre
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Figure 4.5 Different scales for plotting the range 2 metres to 14 metres 
(a) 1 division = 1 metre 

 

(b) 1 division = 2 metres 

 

(c) 1 division = 5 metres 

 

(d) 1 division = 10 metres 

 

In general, the range of the data on each axis should be over a half of the space available. 
A graph with the data points squashed together makes it hard to read accurate values when 
interpolating or finding a gradient. You can think of the choice of values for each square 
(e.g. 1, 2, 5, 10, 20, 50) as a ladder where each step is about twice the previous one. If the 
data occupies less than half the space on an axis, go up the ladder until it does; if it does 
not fit on the graph paper, go down a step.  
Some pupils try to make the data points fill up as much of the space as possible, by 
choosing values for the scale divisions that are not on this ladder. This is not a good idea; 
the scale in Figure 4.6 shows an example (1 division = 3 metres). Although the range of 
values fits well, it is hard to work out what each small square is worth, so plotting the 
values is not easy and therefore more likely to lead to mistakes. 
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(b)  1 division = 2 metres
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Figure 4.5 Different scales for plotting the range 2 metres to 14 metres 
(a) 1 division = 1 metre 

 

(b) 1 division = 2 metres 

 

(c) 1 division = 5 metres 

 

(d) 1 division = 10 metres 

 

In general, the range of the data on each axis should be over a half of the space available. 
A graph with the data points squashed together makes it hard to read accurate values when 
interpolating or finding a gradient. You can think of the choice of values for each square 
(e.g. 1, 2, 5, 10, 20, 50) as a ladder where each step is about twice the previous one. If the 
data occupies less than half the space on an axis, go up the ladder until it does; if it does 
not fit on the graph paper, go down a step.  
Some pupils try to make the data points fill up as much of the space as possible, by 
choosing values for the scale divisions that are not on this ladder. This is not a good idea; 
the scale in Figure 4.6 shows an example (1 division = 3 metres). Although the range of 
values fits well, it is hard to work out what each small square is worth, so plotting the 
values is not easy and therefore more likely to lead to mistakes. 
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(c)  1 division = 5 metres
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Figure 4.5 Different scales for plotting the range 2 metres to 14 metres 
(a) 1 division = 1 metre 
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(c) 1 division = 5 metres 

 

(d) 1 division = 10 metres 

 

In general, the range of the data on each axis should be over a half of the space available. 
A graph with the data points squashed together makes it hard to read accurate values when 
interpolating or finding a gradient. You can think of the choice of values for each square 
(e.g. 1, 2, 5, 10, 20, 50) as a ladder where each step is about twice the previous one. If the 
data occupies less than half the space on an axis, go up the ladder until it does; if it does 
not fit on the graph paper, go down a step.  
Some pupils try to make the data points fill up as much of the space as possible, by 
choosing values for the scale divisions that are not on this ladder. This is not a good idea; 
the scale in Figure 4.6 shows an example (1 division = 3 metres). Although the range of 
values fits well, it is hard to work out what each small square is worth, so plotting the 
values is not easy and therefore more likely to lead to mistakes. 
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(d)  1 division = 10 metres
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Figure 4.5 Different scales for plotting the range 2 metres to 14 metres 
(a) 1 division = 1 metre 

 

(b) 1 division = 2 metres 

 

(c) 1 division = 5 metres 

 

(d) 1 division = 10 metres 

 

In general, the range of the data on each axis should be over a half of the space available. 
A graph with the data points squashed together makes it hard to read accurate values when 
interpolating or finding a gradient. You can think of the choice of values for each square 
(e.g. 1, 2, 5, 10, 20, 50) as a ladder where each step is about twice the previous one. If the 
data occupies less than half the space on an axis, go up the ladder until it does; if it does 
not fit on the graph paper, go down a step.  
Some pupils try to make the data points fill up as much of the space as possible, by 
choosing values for the scale divisions that are not on this ladder. This is not a good idea; 
the scale in Figure 4.6 shows an example (1 division = 3 metres). Although the range of 
values fits well, it is hard to work out what each small square is worth, so plotting the 
values is not easy and therefore more likely to lead to mistakes. 

0 1 2 3 4 5 

2 

0 2 4 6 8 10 

2 

0 5 10 15 20 25 

14 2 

0 10 20 30 40 50 

2 14 

The Language of Mathematics in Science (v3d, copy-editing) 5 

(b) without origin 

 

It is possible to find graphs that are similar to Figure 4.3b but which use a convention to 
show that the range does not start at zero. Such graphs include the zero at the start of the 
axis but then use a ‘squiggly line’ or ‘zig-zag’ to indicate that part of the axis has been ‘cut 
out’. This convention is not used in scientific practice, and should be avoided in school 
science – the split scale can confuse pupils. When interpreting graphs, though, it is 
important for pupils to pay attention to the values on the scales and to know whether the 
graph starts at the origin or not. 
Figure 4.3b shows the variation in values more clearly, but the lack of an origin can be 
misleading. If the ratios of the values are meaningful then Figure 4.3a is better for 
comparing sizes. The striking difference between the shapes of these lines in this example 
illustrates the importance of identifying the range of each axis when interpreting a line 
graph. 
Note that in Figure 4.1 at the start of this chapter, the origin is included. Although it is not 
meaningful to compare the relative sizes of temperatures measured in °C, a value of 0 °C is 
convenient in this case for starting the vertical axis. 
Sometimes, the variables plotted on the axes include negative as well as positive values. 
Examples of such variables include temperatures measured in °C, velocity on a velocity–
time graph, or the potential difference across a component. In such cases, the origin would 
not be plotted at the bottom left of the graph but higher up or to the right or both. Values 
may be plotted above and below the horizontal axis, and to the left and the right of the 
vertical axis. An example of such a graph is shown in Chapter 10 (Figure 10.13b, a 
velocity–time graph for a ball thrown vertically upwards, on page xx). 

4.4 Ranges and scales 
The scale of an axis is how much each square on the graph paper represents. On the graph 
paper shown, each main division has 10 small squares. A scale must be chosen for each of 
the axes so that the range fits well on the graph paper. 

 

It is helpful if pupils first draw the axes on the graph paper, to ensure that there is sufficient 
space on the edges of the graph to put labels and values on the axes. They can then see how 
much space is available for representing the data. (Note that, for simplicity, the edges to 
the left and below the axes have not been indicated on the following diagrams.) 
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In general, the range of the data on each axis should be over a half of the space available. A 
graph with the data points squashed together makes it hard to read accurate values when 
interpolating or finding a gradient. You can think of the choice of values for each square 
(e.g. 1, 2, 5, 10, 20, 50) as a ladder where each step is about twice the previous one. If the 
range of the data occupies less than half the space on an axis, go up the ladder until it does; 
if it does not fit on the graph paper, go down a step. 

Some pupils try to make the data points fill up as much of the space as possible, by choosing 
values for the scale divisions that are not on this ladder. This is not a good idea; the scale in 
Figure 4.6 shows an example (1 division= 3 metres). Although the range of values fits well, 
it is hard to work out what each small square is worth, so plotting the values is not easy and 
therefore more likely to lead to mistakes.

Figure 4.6  Another scale: 1 division = 3 metres
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Figure 4.6 Another scale: 1 division = 3 metres 
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On a bar chart, each of the bars is equally spaced along the horizontal axis, and labelled 
with the values of the independent variable. Sometimes pupils do something similar on a 
graph, where the values they put on the horizontal scale reflect the data values so that the 
data points are equally space out. It needs to be emphasised to them that on a graph each 
scale division has the same value. The convention that the values on each axis increase 
going up and to the right may also need emphasising. Some pupils may try plotting an axis 
in the opposite direction if the order of the values in a data table seems to them to be in the 
‘wrong direction’. 

4.6 Labels and units 
Each axis should include a label that shows the name of the variable and its unit, for 
example ‘Time (min)’ and ‘Temperature (°C)’. The usual convention in secondary school 
science is for the units to be enclosed in brackets. It is not recommended that the scientific 
convention of using the ‘/’ symbol (e.g. ‘Time/min’) be used until post-16 work. (For more 
details, see Section 3.1 Using tables to collect and present data on page xx.) 

4.7 Plotting points and finding values 
Being able to use the scales on axes is important for two purposes: 
� Plotting points on a graph: This involves reading a value on each axis and plotting the 

point where they cross, as in Figure 4.7a. Each data point has an x-coordinate and y-
coordinate. 

� Reading a value off a line: Once a line graph has been drawn, it can be used to find 
values at any point along the line (see Section 7.5 Interpolation and extrapolation on a 
line graph on page xx). This involves finding the value on one axis, seeing where it 
crosses the line, and then reading the value off the other axis, as in Figure 4.7b. 

Figure 4.7 Plotting points and finding values 
(a) 
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On a bar chart, the bars are equally spaced along the horizontal axis, and labelled with the 
values of the independent variable. Sometimes pupils do something similar on a graph, 
where the values they put on the horizontal scale reflect the data values so that the data 
points are equally spaced out. It needs to be emphasised to them that on a graph each scale 
division has the same value. The convention that the values on each axis increase going 
up and to the right may also need emphasising. Some pupils may try plotting an axis in 
the opposite direction if the order of the values in a data table seems to them to be in the 
‘wrong direction’.

4.6	 Labels and units
Each axis should include a label that shows the name of the variable and its unit, for example 
‘Time (min)’ and ‘Temperature (°C)’. The usual convention in secondary school science is 
for the units to be enclosed in brackets. It is not recommended that the scientific convention 
of using the ‘/’ symbol (e.g. ‘Time/min’) be used until post-16 work. (For more details, see 
Section 3.1 Using tables to collect and present data on page 23.)

4.7	 Plotting points and finding values
Being able to use the scales on axes is important for two purposes:

•	 Plotting points on a graph: This involves reading a value on each axis and plotting the 
point where they cross, as in Figure 4.7a. Each data point has an x-coordinate and 
y-coordinate: the coordinates determine the position of the data point in relation to 
the axes.

•	 Reading a value off a line: Once a line graph has been drawn, it can be used to find 
values at any point along the line (see Section 7.5 Interpolation and extrapolation on a 
line graph on page 70). This involves finding the value on one axis, seeing where it 
crosses the line, and then reading the value off the other axis, as in Figure 4.7b.
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Figure 4.7  Plotting points and finding values

(a)  Plotting a point
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Figure 4.6 Another scale: 1 division = 3 metres 
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On a bar chart, each of the bars is equally spaced along the horizontal axis, and labelled 
with the values of the independent variable. Sometimes pupils do something similar on a 
graph, where the values they put on the horizontal scale reflect the data values so that the 
data points are equally space out. It needs to be emphasised to them that on a graph each 
scale division has the same value. The convention that the values on each axis increase 
going up and to the right may also need emphasising. Some pupils may try plotting an axis 
in the opposite direction if the order of the values in a data table seems to them to be in the 
‘wrong direction’. 

4.6 Labels and units 
Each axis should include a label that shows the name of the variable and its unit, for 
example ‘Time (min)’ and ‘Temperature (°C)’. The usual convention in secondary school 
science is for the units to be enclosed in brackets. It is not recommended that the scientific 
convention of using the ‘/’ symbol (e.g. ‘Time/min’) be used until post-16 work. (For more 
details, see Section 3.1 Using tables to collect and present data on page xx.) 

4.7 Plotting points and finding values 
Being able to use the scales on axes is important for two purposes: 
� Plotting points on a graph: This involves reading a value on each axis and plotting the 

point where they cross, as in Figure 4.7a. Each data point has an x-coordinate and y-
coordinate. 

� Reading a value off a line: Once a line graph has been drawn, it can be used to find 
values at any point along the line (see Section 7.5 Interpolation and extrapolation on a 
line graph on page xx). This involves finding the value on one axis, seeing where it 
crosses the line, and then reading the value off the other axis, as in Figure 4.7b. 
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(a) 

 

0 3 6 9 12 15 

14?2? 

0 10 20 30 40 50 

15 

10 

5 

0 

D
is

ta
nc

e 
(m

et
re

s)
 

Time (s) 

(b)  Finding a value
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(b) 

 

There are no universally accepted conventions for the symbols used to represent data 
points on graphs. The most common symbol used in school science is �, but ⨀ and � are 
also used. To plot a data point, its position can first be marked with a small dot and then 
diagonal lines drawn through it to form �, or a circle drawn round it to give ⨀. (Note that 
sometimes drawing a circle around a data point is intended to indicate an outlier.) The 
advantage of the � symbol is that the position of the point can be found in two stages by 
drawing first one line and then the other. For older pupils this can lead in to the idea of 
drawing error bars to indicate uncertainty in the measurements. The disadvantage is that � 
may not stand out so clearly visually from the gridlines on the graph paper as �. 
Which symbol (or symbols) to use is really a choice for teachers that depends on the 
context and what is most appropriate to the pupils. It is a matter of convention not 
correctness. There is no justification for penalising a pupil for drawing a graph that has 
‘incorrect’ symbols. 

4.8 Reading scales 
When a data point is on a main division, it is easy to read the value. For example, in 
Figure 4.8a, the value is 40 seconds. If the data point is not on a main division, it depends 
on the value of the small squares. In Figure 4.8b, each small square is 1 second, so it is not 
too difficult to read the value as 16 seconds.  

Figure 4.8 Some scales are easier to read than others. 
(a) 

 

<Note floating “seconds” text boxes in (a) to (c)> 
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There are no universally accepted conventions for the symbols used to represent data points 
on graphs. The most common symbol used in school science is ×, but ⨀ and + are also 
used. To plot a data point, its position can first be marked with a small dot and then diagonal 
lines drawn through it to form ×, or a circle drawn round it to give ⨀. (Note that sometimes 
drawing a circle around a data point is intended to indicate an outlier.) The advantage of the 
+ symbol is that the position of the point can be found in two stages by drawing first one 
line and then the other. For older pupils this can lead in to the idea of drawing error bars to 
indicate uncertainty in the measurements. The disadvantage is that + may not stand out so 
clearly visually from the gridlines on the graph paper as ×.

Which symbol (or symbols) to use is really a choice for teachers that depends on the context 
and what is most appropriate to the pupils. It is a matter of convention not correctness. There 
is no justification for penalising a pupil for drawing a graph that has ‘incorrect’ symbols.

4.8	 Reading scales
When a data point is on a main division, it is easy to read the value. For example, in 
Figure 4.8a, the value is 40 seconds. If the data point is not on a main division, it depends on 
the value of the small squares. In Figure 4.8b, each small square is 1 second, so it is not too 
difficult to read the value as 16 seconds. 

Figure 4.8  Some scales are easier to read than others

(a)
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There are no universally accepted conventions for the symbols used to represent data 
points on graphs. The most common symbol used in school science is �, but ⨀ and � are 
also used. To plot a data point, its position can first be marked with a small dot and then 
diagonal lines drawn through it to form �, or a circle drawn round it to give ⨀. (Note that 
sometimes drawing a circle around a data point is intended to indicate an outlier.) The 
advantage of the � symbol is that the position of the point can be found in two stages by 
drawing first one line and then the other. For older pupils this can lead in to the idea of 
drawing error bars to indicate uncertainty in the measurements. The disadvantage is that � 
may not stand out so clearly visually from the gridlines on the graph paper as �. 
Which symbol (or symbols) to use is really a choice for teachers that depends on the 
context and what is most appropriate to the pupils. It is a matter of convention not 
correctness. There is no justification for penalising a pupil for drawing a graph that has 
‘incorrect’ symbols. 

4.8 Reading scales 
When a data point is on a main division, it is easy to read the value. For example, in 
Figure 4.8a, the value is 40 seconds. If the data point is not on a main division, it depends 
on the value of the small squares. In Figure 4.8b, each small square is 1 second, so it is not 
too difficult to read the value as 16 seconds.  

Figure 4.8 Some scales are easier to read than others. 
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(b)
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(b) 

 

(c) 

 

(d) 

 

<Note floating text box, and add large “5” and “10”> 

The scale in Figure 4.8c is more difficult, since each small square is 0.5 seconds. It may be 
helpful to jot down the values of the small squares to see how much to add on to the main 
division (Figure 4.8d). Note that the values for these small squares start at ‘0’; a common 
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5	 Working with proportionality 
and ratio

There are many different kinds of relationship between variables. A very common 
relationship is when one variable is proportional to another and this section focuses on this 
kind of relationship. It also considers the related ideas of ratio, percentage and scale.

5.1	 Meaning of proportional
A formal way of expressing proportionality would be that variable A is proportional to 
variable B when the values of the two variables are related by a constant multiplier. It is easier 
to understand the idea of proportionality through an example.

Banks count coins by weighing them. Suppose a coin has a mass of 5 g. Then two coins have 
a mass of 10 g. Doubling the number of coins doubles the mass. If there are 10 coins then 
they have 10 times the mass of one coin (i.e. 100 g). This is expressed by saying that the mass 
of coins is proportional to the number of coins.

A proportional relationship also works the other way round. The number of coins is 
proportional to the mass of the coins. A bag with 100 g of coins contains 10 coins. If you 
have double the mass (200 g) then you have double the number of coins (20). This is 
essentially what the bank is doing when it weighs coins to count them.

5.2	 Proportionality and visual representation
Representing a proportional relationship as a graph can be a helpful way of exploring the idea 
further. The example here uses actual results of measuring the mass of a pile of 2p coins, with 
a reading being taken after each successive coin is added to the pile. The table of results is 
shown in Figure 5.1a and a line graph in Figure 5.1b (the values have been omitted from the 
graph for simplicity).

There are two key features of a graph showing proportionality between variables:

•	 the relationship is represented by a straight line

•	 the straight line passes through the origin.

Key words: proportional, directly proportional, line graph, origin, gradient, slope, 
horizontal axis, vertical axis, x-axis, y-axis, x-coordinate, y-coordinate, rate, 
constant, constant of proportionality, reciprocal, inverse, inversely proportional, ratio, 
percentage, scale, scale drawing, scale factor, linear dimension.
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Figure 5.1  Measuring the masses of 2p coins

(a)

Number of 2p coins Total mass (g)

0   0   

1   7.12

2 14.24

3 21.36

4 28.48

etc.

(b)
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s 
(g

)

Number of 2p coins

Doubling the numbers of coins doubles the mass (e.g. 4 coins have double the mass of 
2 coins, and 6 coins have double the mass of 3 coins). Trebling the number of coins trebles 
the mass; halving the number of coins halves the mass. Figure 5.2 shows this idea represented 
on the graph. This is expressed by saying that the mass of the coins is proportional to the 
number of coins. (The term directly proportional is also used, but proportional is generally 
the preferred term in science. Using the term ‘directly proportional’ is helpful when it is 
being contrasted to ‘inversely proportional’, as explained later.)

Figure 5.2  Doubling one variable doubles the other
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doubling 
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... doubles
the total mass

Note that for a relationship to be proportional, the line on the graph needs both to be 
straight and to pass through origin. A curve that passes through the origin does not represent 
a proportional relationship. A straight line that does not pass through the origin represents 
a linear relationship but not a proportional one. A proportional relationship is a special 
case of a linear relationship. (For more details, see Section 9.11 Mathematical equations and 
relationships in science on page 99.)

Note also that proportionality is not the same as correlation – these two terms are sometimes 
confused with each other. They are both concerned with the relationship between two 
variables but correlation applies to a different type of data. (See Section 8.7 Relationships 
between variables: scatter graphs and correlation on page 83.)

5.3	 Interpretation of gradient
Figure 5.3a shows a graph with two lines – now representing the results for measuring the 
masses of two stacks of coins, of 1p as well as 2p. The line for the 2p coins is steeper. This 
implies that the mass of the 2p stack rises more than the mass of the 1p stack when a coin is 
added. This is because each 2p coin has a greater mass than a 1p coin. The steepness of the 
line is called the gradient (the term slope is also used, but gradient is the preferred term).

0
  0

0
  0
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Figure 5.3  Finding the gradient of a line
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Figure 5.3b shows how the gradient of this line can be measured: it is the increase in the 
variable on the vertical axis or y-axis divided by the corresponding increase in the variable 
on the horizontal axis or x-axis. 

Since this is a straight line, it does not matter where this is done or how large the chosen 
interval is – the gradient is the same along the whole length of the line. For example, in 
Figure 5.3b, the gradient is measured in two different places along the line. The vertical 
measure is the difference between the two y-coordinates, and the horizontal measure is the 
difference between the two x-coordinates.

= =
28.48 ggradient at (A)  7.12 g per coin
4 coins

= =
21.36 ggradient at (B)  7.12 g per coin
3 coins

The gradient works out the same for both (A) and (B), and, in this example, is in fact the 
mass of one coin.

Note that the two small triangles drawn on this graph are intended only to illustrate that the 
gradient of this straight line is the same everywhere. When finding the gradient of a line on 
a real graph of data, the triangle used should be drawn as large as possible (see Section 9.12 
Graphs of quantities against time: gradients on page 103).

Another example that illustrates the meaning of a gradient is shown in Figure 5.4. The graph 
shows the change in the volume of water in a bath over time. At the start, the bath is empty. 
One line represents a fully open tap and the other a tap that is partially closed. 

Figure 5.4  A bath filling with water
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Since this is a change over time, the gradient represents a rate of change. In this case, the 
gradient is the flow rate of the water and is measured in litres/min. Both lines are straight and 

0
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  0

0
  0
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pass through the origin – this is a proportional relationship. For each tap setting, doubling 
the time will double the volume since the rate (i.e. the gradient) is constant. The difference 
in the gradients of the two lines shows that the rate of change is greater when the tap is fully 
open than when it is partially closed. 

5.4	 Proportionality and algebraic representation
A proportional relationship can be represented algebraically as:

variable A µ variable B

e.g. mass of coins µ number of coins

The symbol ‘µ’ stands for ‘is proportional to’. This relationship can be expressed as 
a formula:

variable A = constant ́  variable B

e.g. mass of coins=mass of one coin ́  number of coins

The constant in the formula (in this case, ‘mass of one coin’) is equal to the gradient of the 
line on the graph. It is called the constant of proportionality. The formula has the general 
form of the mathematical equation:

y = kx

This represents a straight line passing through the origin with a gradient of k.

Any proportional relationship ‘works both ways’: so if ‘y is proportional to x’ then it is also 
true to say that ‘x is proportional to y’. In mathematics, this idea is expressed by saying that 
‘x and y are in direct proportion’.

A related kind of relationship is when one variable is proportional to the reciprocal or 
inverse of another variable, i.e.

µ
1

y
x

This would be described by saying that y is inversely proportional to x: if x is doubled then y 
is halved. The general form of the equation would be:

=
constant

y
x

These ideas about directly proportional and indirectly proportional relationships are illustrated 
with some common examples from school science in the next section.

5.5	 Proportional relationships in science
Some proportional relationships in science arise from definitions of quantities and others are 
derived from experimental observations. An example of a definition is:

=
massdensity  

volume



The Language of Mathematics in Science: A Guide for Teachers of 11–16 Science	 45

Chapter 5: Working with proportionality and ratio

This is not of the form y= kx but it can be rearranged. (For details on rearranging formulae, 
see Chapter 9 Scientific models and mathematical equations on page 87.)

mass = density ́  volume

For objects made of the same material (i.e. constant density), the mass is proportional to the 
volume. In Figure 5.5a, the gradient for ‘iron’ is greater than for ‘aluminium’ because iron is a 
more dense material. Here, the constant of proportionality is the density of the material and 
this can be found by calculating the gradient of the straight line.

Figure 5.5  Proportional relationships

(a)  The mass of a particular material is 
       proportional to its volume

M
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s

Volume

(b)  The force exerted by a spring is proportional 
          to the extension

Fo
rc

e

Extension

An example of a relationship derived from experiment is Hooke’s Law. By experiment, it was 
found that the force exerted by a spring is proportional to the extension (within the elastic 
limit of the spring). The constant of proportionality is called the spring constant and it is 
a characteristic of a particular spring: the larger the spring constant, the stiffer the spring 
(Figure 5.5b).

force exerted = spring constant ́  extension

For each relationship in science, there tends to be a ‘conventional’ way of expressing the 
formula, and this may not always have the form y= kx. The formula may need to be 
rearranged to express it in this way. In addition, what is considered to be the variable and 
what is considered to be the constant depends on the context. For example, if bottles of the 
same fixed volume are each filled with liquids of different densities, the mass of the liquid is 
proportional to the density and the volume would be the constant.

Figure 5.6 shows selected relationships, with the constants in the formulae underlined.

iron

aluminium

0
  0

spring A

spring B

0
  0

Figure 5.6  Examples of constants in proportional relationships

Relationship Formula (constant is underlined)

For an object made of a particular material:
mass µ volume

mass = volume × density

For filling a fixed volume with different liquids:
mass µ density

mass = volume × density

For a car travelling at constant speed along a motorway:
distance travelled µ time

distance travelled = speed × time

For an object moved by a constant force:
work done µ distance

work done = force × distance

For a resistor that obeys Ohm’s Law (i.e. a constant 
resistance):

potential difference µ current
potential difference = current × resistance
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Note that saying that something is a constant does not mean that it is just a number with no 
units. In the algebraic equation y= kx, the constant of proportionality k does represent just 
a number. However, in the examples in the above table, all of the constants are values with 
units. Thus, for the first example, mass (g) is proportional to volume (cm3), and the constant 
is density (g/cm3).

Rearranging the kinds of formulae shown in the table above can reveal relationships that are 
inversely proportional. For example:

wave speed = frequency ́  wavelength

For light in a particular medium, the wave speed is constant. Rearranging the formula brings 
out more clearly the relationship that frequency is inversely proportional to wavelength.

=
wave speedfrequency
wavelength

This means that if the wavelength is doubled then the frequency is halved. If it is trebled 
(or multiplied by any amount k) then the frequency is divided by three (or divided by the 
amount k).

For more details about directly proportional and inversely proportional relationships, see 
Section 9.11 Mathematical equations and relationships in science on page 99.

5.6	 Ratios
A ratio is a comparison of two similar quantities and thus does not have units. For example, 
the mass of a 1p coin is 3.56 g and the mass of a 2p coin is 7.12 g. Thus the ratio of the mass 
of a 1p coin to the mass of a 2p coin is 3.56 : 7.12 (no units). This reduces to 1 : 2. The mass 
of a 2p coin is exactly twice that of a 1p coin and so, in this example, the ratio consists of 
integers (whole numbers).

Similarly, in aluminium oxide (Al2O3), the ratio of aluminium atoms to oxygen atoms is 2 : 3 
– again integers. It is also possible to express this as 1 : 1.5. Which of these ways of expressing 
a ratio is better is a matter of choice, depending on what is more useful for the context.

The ratio of the width of a sheet of A4 paper (210 mm) to the height (297 mm) is 210 : 297. 
This is a rather unwieldy ratio. In such cases, the ratio is expressed in the form ‘1 : x’. For A4 
paper, this would be 1 : 1.414. Using a ratio in this form makes comparisons with other ratios 
easier. For example, the ratio of the width to the height for A3 paper is the same (1 : 1.414) as 
for A4, showing that the two sizes of paper are similar shapes.

In some ratios, the two quantities being compared are also parts of a whole. For example, 
the ratio of aluminium atoms to oxygen atoms in Al2O3 is 2 : 3, and here it is meaningful to 
add the ‘2’ and ‘3’ together to give ‘5’, since this represents the total number of atoms in the 
formula. Thus, 2∕5 of the atoms in aluminium oxide are oxygen atoms (or 0.4 or 40%).

5.7	 Proportional reasoning and ratios
The following is an example of a calculation that appears to be relatively straightforward: 
2 cm3 of aluminium has a mass of 5.4 g. What is the mass of 4 cm3? (Answer: 10.8 g)
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The simplest method of arriving at the answer is to reason that doubling the volume (from 
2 cm3 to 4 cm3) will double the mass (from 5.4 g to 10.8 g). Although this seems intuitive, it 
does in fact involve a rather subtle idea – in effect, comparing two ratios to find x:

volume 1 (cm3) : volume 2 (cm3) = mass 1 (g) : mass 2 (g)

	 2 : 4 = 5.4 : x

Finding the value of x from these ratios involves proportional reasoning. While using these 
simple ratios might not be too difficult, it becomes conceptually harder when the mental 
manipulation of the values is more challenging. For example, 17 cm3 of aluminium has a 
mass of 91.8 g. What is the mass of 63 cm3?

In such a case, it may be easier to do this as a two-stage calculation, working out first the 
density of aluminium (i.e. the mass of 1 cm3). This value can then be used to calculate the 
mass of 63 cm3 of aluminium.

For further details about different calculation strategies, see Chapter 9 Scientific models and 
mathematical equations on page 87.

5.8	 Percentages
A percentage is a kind of fraction that relates a part to a whole. Using a percentage is helpful 
when comparing one thing to another, because it can avoid unwieldy fractions or decimals.

For example, if a population of 200 rabbits (the whole) has 60 males (the part) then the 
proportion of males in the population can be expressed in any of the following ways:

60 3 30                                                   30% 
200 10 100

Thus, if the proportion of the part to the whole is expressed as a fraction with 100% as the 
denominator then the percentage is the numerator:

=
percentagepart

whole 100%

This equation can be rearranged so that any one of these values (part, whole or percentage) 
can be calculated from values for the other two (for details of rearranging equations, see 
Chapter 9 Scientific models and mathematical equations on page 87). For example, a 
percentage can be calculated from:

= ´
partpercentage  100%

whole

However, difficulties in calculations involving percentages can arise because of confusion over 
what the ‘part’ and the ‘whole’ represent. Avoiding the inappropriate use of formulae requires 
an understanding of what the percentage means in the context of the problem. For example, 
a percentage may apply to a part of an existing whole, or to an increase, or to a decrease.

The following questions are represented visually in Figure 5.7, which emphasises the meaning 
of the percentage in each case.

(a)	 A population of 200 rabbits has 30% males. How many males are there? (Answer: 
60 male rabbits)
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(b)	 A population of 200 rabbits increases by 30%. How big is the population after the 
change? (Answer: 260 rabbits)

(c)	 A population of 200 rabbits decreases by 30%. How big is the population after the 
change? (Answer: 140 rabbits)

Figure 5.7  Different meanings of a percentage
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Pupils can get a better feeling for the idea that a percentage represents a fraction (a 
part of a whole) if they are familiar with some common examples: 50% represents ½, 
25% represents ¼, 20% represents 1∕5, and so on.

Note that, although percentages can be effective for communicating values, they may not 
always be the most useful form for doing calculations. For example, saying that something 
has a 10% chance of happening is the same as saying that it has a probability of 0.1; the 
former communicates a clear message but the latter is more convenient for use in calculations 
on probabilities.

5.9	 Scale drawings and images
To scale a quantity means to enlarge or reduce it by a given amount. A scale drawing 
of an object is one in which all of the dimensions of the original object are multiplied 
by a constant. This constant is called the scale factor (another example of a constant of 

proportionality). Pupils encounter scale drawings in biology (e.g. images of microscopic 
organisms) and in physics (e.g. representations of forces).

If the scale factor is greater than 1 then this produces an enlarged image (e.g. a drawing of a 
bacterium). If the value of the scale factor is between 0 and 1 then this produces a reduced 
image (e.g. a map). 

In the example shown in Figure 5.8, the original on the left has been reduced 3 times to 
produce the scale drawing on the right, i.e. the scale factor is ⅓. Every measurement is scaled 
by the same factor, so A2 is ⅓ times A1 , and B2 is ⅓ times B1.
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Figure 5.8  Original image and scale drawing 

A1 

B1 

A2 

B2 

Another way of representing the scale factor would be to say that the scale of the drawing is 
1 : 3. Note that, in this ratio, the first number represents the dimension of the scale drawing 
and the second number represents the dimension of the original. Other examples of scales as 
ratios would be a model aeroplane with a scale of 1 : 72 and a map with a scale of 1 : 50 000.

For drawings and photographs of microscopic objects, where the image is enlarged, the scale 
factor is usually represented as a magnification. For example, ‘100´’ may appear next to 
an image meaning that it is 100 times larger than the original (i.e. the scale factor is 100). 
Interpreting such images requires an understanding both of scaling and of the units used 
to describe the sizes of microscopic objects (see Section 2.6 Dealing with very large and very 
small values on page 20).

Note that the scale factor applies only to the linear dimensions. For the effects of scaling on 
areas and volumes, see Chapter 10 Mathematics and the real world on page 107.
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6	 Dealing with variability

Variability in a set of data relates to how spread out or how close together the values are 
(the distribution of values). Although variability can arise for various reasons, the questions 
of interest, and the mathematical techniques used to answer them, are similar. These 
questions are:

•	 How big is a typical value?

•	 How much do the values vary?

•	 Are there any unusual values?

6.1	 Where does variability come from?
A familiar example of variability is the way that people are different to each other. For 
example, some people run faster than others. In a 100 metres race, we would not expect all 
the runners to get exactly the same time – there would be a range of values. For a random 
sample of people, there would be lot of variability, i.e. a wide spread of values. For a race 
with elite runners, the times would be faster but also much closer to each other, and thus 
less variability.

A very different example is rolling a marble down a slope. If all the conditions were kept 
exactly the same, using identical marbles down identical slopes, then in principle we might 
expect to get exactly the same time for every run. However, in practice, it is likely that there 
will be some variability in the values. This variability does not result from differences between 
what is being measured, but in the act of measurement itself. Repeated measurements of the 
same thing may be different from each other because of measurement uncertainty.

The distinction between these is very important to understand. For all measurements 
there is uncertainty in the measured values, so this may always be a source of variability in 
repeated measurements. Variability can also arise from differences between the individuals in a 
population. Examples of these two sources of variability are:

•	 Measurement uncertainty (for repeated measurements of the same thing)
QQ time of travel of a marble rolling down a slope
QQ height of a bouncing ball dropped from a particular height
QQ time for a paper parachute to fall
QQ volume of a solution used in a titration.

Key words: variability, random error, true value, uncertainty, population, sample, 
distribution, histogram, batch, class interval, frequency, average, mean, arithmetic 
mean, median, mode, spread, range, quartile, interquartile range, box plot, outlier, 
anomaly, probability, independent events, combined events, risk.
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•	 Differences between individuals (for measurements of a sample of different but related 
things)

QQ time to run 100 metres for different people
QQ height of pupils in a year group
QQ number of spines on holly leaves
QQ air pollution levels in different locations.

Understanding the differences between these two sources of variability is important, for 
example in appreciating the difference between line graphs and scatter graphs (see Section 3.6 
Line graphs and scatter graphs: two related quantities on page 29). For ‘line graph’ type data, 
the data points may not all lie on a fitted line because of measurement uncertainty; for ‘scatter 
graph’ type data, a fitted line may not pass at all close to many of the data points because of 
differences between individuals.

6.2	 Variability and measurement uncertainty
The reason for making repeated measurements in an experiment is because of random 

error. The experimental design should aim to minimise these errors but they cannot be 
eliminated. Thus any single measurement may be different from the true value, and repeated 
measurements may be different from each other. This variability is called the uncertainty. It 
depends both on the nature of the measuring instrument and on what is being measured. 

For example, when using a ruler divided into millimetres, it is not difficult to measure the 
width of a sheet of paper to the nearest millimetre. Using a ruler divided into centimetres 
makes this harder. An estimate can be made by eye to the nearest millimetre, but with 
greater uncertainty than using the first ruler. The second ruler has a lower resolution, and the 
uncertainty is due to the nature of the measuring instrument.

By contrast, the uncertainty in measuring by eye the height to which a ball bounces is related 
more to the nature of what is being measured than to the measuring instrument. One can use 
a metre rule divided into millimetres but the movement of the ball means that it is really only 
possible to measure its position to the nearest centimetre.

A metre rule is an example of an analogue instrument, for which the resolution is related to 
the size of the scale divisions. On a digital instrument, the resolution is determined by the 
digits shown on the display.

For example, many digital thermometers read to the nearest 0.1 °C – this is its resolution. 
If the temperature of some warm water is measured as 32.6 °C then this suggests that the 
true value lies closer to this value than to 32.5 °C or 32.7 °C. However, if a second digital 
thermometer is used to measure the same temperature, it may display 32.9 °C. It is quite 
usual for different measuring instruments to give different measurements for the same 
thing. How close a reading is to the true value is related to the accuracy of the instrument. 
Thus the uncertainty in a measurement may be related to the instrument’s accuracy and not 
its resolution.

The uncertainty in using a digital instrument, as for an analogue instrument, may also be 
related to the nature of what is being measured. If the temperature of the system being 
investigated changes very rapidly then it may only be possible to make measurements by eye 
to the nearest 1 °C even though the thermometer reads to the nearest 0.1 °C.

In 11–16 science, the uncertainty of a measurement relates to the number of significant 
figures in the value. For example, giving the mass of an object as 12 g suggests a greater 
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uncertainty in its value than if it is given as 12.39 g. The number of significant figures is a 
reflection of the precision of the measurement. (See Section 1.2 Measurement, resolution and 
significant figures on page 9.)

In scientific practice, and in post-16 science, measurement uncertainty is indicated explicitly 
using the ‘±’ symbol to show the range within which the true value is likely to lie. For 
example, the manufacturers of a digital thermometer may state that its accuracy is ± 0.3 °C, 
so a measurement with this thermometer might be written as 32.6 °C ±  0.3 °C. This means 
that the true value is likely to be found in the range 32.3 °C to 32.9 °C. Note that it does not 
mean that the true value is definitely in this range but that there is a good probability that it is 
(often the probability value used is 95%).

It is important to note that the accuracy of the instrument (± 0.3 °C) is not the same as its 
resolution (0.1 °C). They are, however, related through the choices made in the design of the 
instrument. It would be possible to make a digital thermometer with an accuracy of ± 0.3 °C 
but with a digital display that could show values to the nearest 0.001 °C. There would be no 
point to this and it would be confusing. A display that reads to the nearest 0.1 °C is adequate 
for the accuracy of this particular thermometer.

In summary, measurement uncertainty depends on the resolution of the instrument, the 
accuracy of the instrument and on the nature of what is being measured. It is a complex 
and subtle area, where there are no simple rules about rounding and significant figures for 
measured and calculated values. Attempting to invent artificial rules for 11–16 science is 
neither desirable nor possible. To develop pupils’ understanding, it is better if they think 
about the nature of each situation and make sensible judgements.

Finding the mean of a set of repeated measurements can reduce the uncertainty and give a 
value that is more likely to be closer to the true value than any single measurement.

In secondary school science experiments, a common rule of thumb is to take three repeated 
measurements (unless there is poor agreement between the results, suggesting that further 
measurement is needed). In scientific work, there is nothing ‘special’ about three repeated 
measurements. The choice of how many repeated measurements to take depends on their 
variability. School activities are usually designed so that random errors are relatively small. 
Taking more than three repeated measurements is time consuming, while with only two 
measurements there is a chance that the values may be in agreement but both incorrect. 
Three measurements is a reasonable compromise for most contexts in school science.

For example, the travel time of a marble rolling down a slope could be measured using a 
stopwatch. These times would be subject to random errors; for example, the watch might not 
be started and stopped at exactly the same point on each run.

If the measured times are 4.37 s, 4.72 s and 4.48 s then an answer to the question ‘How big 
is a typical value?’ can be found by calculating the mean. Dividing the sum of the values 
by the number of values using a typical calculator produces a value that may be displayed as 
4.523333333. Rounding this value to three significant figures (the same as for the measured 
times) gives 4.52 s. The stopwatch reads to the nearest 0.01 s but the spread in the values 
suggests that the random errors in timing by hand are somewhat larger than this. In this case, 
it may make more sense to round to only two significant figures, i.e. 4.5 s. Thus, for these 
data, the value of 4.5 s is our best guess of the true value of the travel time. (For more about 
means and significant figures, see Section 2.4 Calculating means on page 18.)
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For further information about the measurement uncertainty, see the ASE/Nuffield 
publication The Language of Measurement.

6.3	 Variability in a population of individuals
Many biological experiments involve making measurements on a sample of individuals in 
a population. Here, the variability is not due to random error but because of differences 
between the individuals in the sample. The variability relates to what is of interest about 
the sample itself and not about the way the values are measured. (For further details about 
sampling, see Section 8.2 Populations and samples on page 76.)

For example, suppose a group of four girls aged 15 run a 100 metres race. Their times are 
measured as 14.5 s, 13.9 s, 15.3 s and 14.8 s. Although there will be random errors in these 
measurements, the variability here is caused mainly by differences in the individuals themselves. 
Some girls can run faster than others.

An answer to the question ‘How big is a typical value?’ can again be found by calculating the 
mean – for these data it is 14.6 s. If the girls are reasonably representative of their age group 
then this value is our best guess of the typical running time for 100 metres of a 15-year-old 
girl. Of course, this is a small sample and the girls might not be at all representative of the 
population. So, our guess might not in fact be a good guess for the typical running time but, 
in the absence of any other data, this is our best guess.

Not all populations of individuals are biological. In manufacturing, the objects being made 
can be thought of as populations. For example, in making pistons for a particular car engine, 
the sizes of each should in principle be identical. In practice, there will be some variability 
in this ‘population’, but the aim of the production process is to keep this variability within 
acceptable limits.

With only three or four individuals, taking a mean is about as much as can be done. 
However, experiments and surveys that look at samples of populations often collect data 
on relatively large numbers of individuals. With larger samples, there is more that can be 
explored, and it is useful to have techniques for seeing patterns in large data sets.

6.4	 Displaying larger sets of values
A useful way of displaying the distribution of a larger number of values is to draw a 
histogram. For example, the first column in Figure 6.1 shows a set of measurements of 
the heights of a sample of 12- to 13-year-old pupils (in cm). A data set such as this, which 
contains a set of values related to a single quantity, is sometimes referred to as a batch of data. 
Just looking at the raw data gives a sense of how big the values are, but organising the data 
enables more to be seen.

The next step here is to order the raw data in order of size. Figure 6.1b shows a column of 
values going from the highest down to the lowest. (A quick method for ordering sets of values 
is described in Section 8.3 Analysing a batch of data on page 77.) It is now easier to get a 
sense by eye of the variation in these values.
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Figure 6.1 Heights of pupils in a sample (cm)

(a) Raw (b) Ordered (c) Put into classes (d) Histogram
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In order to draw a histogram, the next step is to split the set of values into a number of 
groups or ‘classes’ – the class interval is the range of values within each class. The choice of 
class interval should result in a sensible number of classes, neither too few nor too many. A 
convenient choice is 130–139 cm, 140–149 cm, 150–159 cm and 160–169 cm. 

The data values in each class are counted to give the total number or frequency for each class 
as shown in Figure 6.1c. For example, there are four data values in the class interval 160–
169 cm (163, 163, 164 and 168), so it has a frequency of 4.

Note that discrete data can also be put into groups like this (for an example, see Section 3.2 
Using tables to process data on page 24, which discusses the construction of a frequency 
table from discrete data).

Figure 6.1d shows a histogram drawn from these values. The height of each bar shows the 
frequency of values (i.e. the number of values) within each class interval (i.e. the range of 
values of the bar).

This set of data has a fairly small number of values. With a larger number of values, a 
smaller class interval could be chosen (say 5 cm instead of 10 cm), so that each bar represents 
a narrower range of values. The histogram would then have more bars and give a better 
indication of the distribution of values. With only a small number of values, this would not 
be a good idea since there would not be many values in each of the classes. Choosing an 
appropriate width for the class interval is entirely a matter of judgement.

It is important not to confuse a histogram with a bar chart, since they are very different. 
A histogram shows the frequency distribution of a set of values, and the horizontal axis 
represents a quantitative (continuous or discrete) variable. To indicate this, the columns 
are drawn touching each other. By contrast, in a bar chart the horizontal axis represents 
a qualitative (categorical) variable and the columns are drawn with spaces in between 
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(see Section 3.4 Charts showing a quantity categorised by one factor on page 26 for 
further details).

Note that there are differences between mathematics and science in the meaning of 
‘histogram’. For the histogram in Figure 6.1, the width of each column (the class interval) 
has been chosen to be the same. This is the usual practice in scientific literature and in 
school science.

In mathematics, pupils learn to draw histograms in which the class intervals (and hence the 
width of the columns) are different from each other; the vertical axis represents ‘frequency 
density’ and not frequency. Frequency density is calculated by dividing the frequency of 
the class interval by the width of the class interval, and so the frequency for each class is 
represented by the area of the column and not by its height. 

If all the columns are the same width then the shape of the display is the same regardless of 
whether frequency density or frequency is plotted. 

In science, a ‘histogram’ is generally taken to mean a plot of frequency, with all the class 
intervals being the same width. Since this is what pupils will encounter in science textbooks, 
it is this meaning that is used in this publication. Teachers and pupils need to be aware of this 
difference in the meaning of histogram in mathematics and science.

6.5	 How big is a typical value?
Just by looking at the values for the example above, it is easy to see that a typical value is 
somewhere between 140 cm and 160 cm. Mathematically, three measures may be used to 
express this idea of a ‘typical value’ or ‘central tendency’ – mean, median and mode:

•	 Mean (strictly speaking the arithmetic mean): For this set of values, the sum of the 
heights is 2728 cm and the number of values is 18, so the mean is 151.6 cm. One 
problem with a mean is that it can be affected by outliers (unusually high or low 
values), since it uses all values as part of the calculation.

•	 Median: This is the middle value of a distribution, and can easily be found once the 
values have been ordered. If there is an even number of values (as here), the median is 
the mean of the middle two: these are 149 cm and 151 cm, so the median is 150 cm. 

•	 Mode: In a distribution of discrete values, the mode is the most common value. 
Some sets of data may have more than one mode. For the data shown in Figure 6.1 
(continuous data, not discrete), the interval with the largest number of values (in this 
case 140–149 cm) is the modal interval.

The mean, the median and the mode are all ways of expressing an average. In everyday 
language, the word ‘average’ is generally used as an alternative term for ‘arithmetic mean’. 
In science and mathematics, this usage should be avoided, since an ‘average’ refers to any 
measure of a typical value of a distribution.

In summary, three ways of expressing an average for these data are:

•	 mean = 151.6 cm

•	 median = 150 cm

•	 modal interval = 140–149 cm.

The mean is the most familiar and the one most commonly used in school science. An 
advantage of a median is that, unlike a mean, its value is not affected by outliers; a median 
can also be quicker to find than a mean.
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When talking about an average as being a ‘typical value’, it is important to emphasise that it 
does not mean ‘the most common value’. For example, saying that a typical value for these 
data is 150 cm does not mean that most of these pupils are 150 cm tall. Instead, think of it 
as just meaning ‘roughly how big’. For an alien who did not know whether a 12- to 13-year-
old was nearer 10 nanometres or 10 metres tall, saying that a ‘typical value’ is 150 cm gives a 
good sense of size.

6.6	 How much do the values vary?
In addition to having a way of indicating a ‘typical value’ for a set of data, it is useful to have 
a measure of how spread out the values are. Two commonly used measures of spread are the 
range and the interquartile range.

The range is the difference between the highest and lowest values. For these data, the range 
is 31 cm (168 cm-137 cm). Note that in school science, the ‘range’ of a set of data is 
generally used to indicate the lowest and highest values (e.g. the range is ‘from 137 cm to 
168 cm’). Since this meaning differs from the one used in mathematics and statistics, pupils 
should be told explicitly what they should do if they are asked to find the range of a set of 
data (e.g. ‘write down the highest and lowest values’ or ‘calculate the difference between the 
highest and lowest values’). Although it is easy to calculate, a problem in using the range is 
that it is affected by extreme values at the high end or low end of the distribution (outliers).

Figure 6.2 shows another way of representing a distribution visually. It is called a box plot, 
and these types of display are very effective at showing the variation in values. To construct 
a box plot, the first step is to identify the highest and lowest values, and the median. This is 
shown in Figure 6.2a.

Figure 6.2  A box plot is another way of displaying a distribution of values

(a)  Splitting the data into 
      halves

(b)  Splitting the data into quarters (c)  Box plot showing summary values
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Finding the median can be thought of as splitting the data set into two halves – the median 
is the value where the data set is split. The next step is to split each of these two halves again 
in halves. Thus, the data set has now been split into four quarters, and this is represented 
in Figure 6.2b. The values where the upper and lower halves of the data are split are called 
the quartiles.

The upper quartile is the middle of the top half of the data (in this case, the middle of the 
largest nine values is 158 cm) and the lower quartile is the middle of the bottom half of 
the data (in this case, 144 cm). These five ‘summary’ values (highest value, upper quartile, 
median, lower quartile and lowest value) can now be used to draw the box plot shown in 
Figure 6.2c. (See Section 8.3 Analysing a batch of data on page 77 for further details of how 
to draw a box plot.)

The central box of a box plot is a better indication of the spread of values than the range, 
since it is not distorted by outliers. It represents the interquartile range, which is the 
difference between the upper quartile and the lower quartile. Here, its value is 14 cm 
(158 cm-144 cm).

The line extending above the box represents the upper quarter of the values and the line 
below represents the lower quarter of the values. Thus, the central box represents one half of 
the values in the distribution: it indicates that the heights of half of the pupils in this sample 
lie between 144 cm and 158 cm.

Measures of spread are especially useful when comparing two or more data sets, and this is 
discussed in Section 8.5 Comparing batches of data on page 81.

6.7	 Comparing shapes of distributions
Box plots and histograms are both helpful ways of displaying batches of data. The particular 
strength of the box plot is that when a number of them are drawn side-by-side, the eye 
can quickly scan across and compare the medians and spreads of different distributions. A 
histogram shows more detail about a distribution than the five summary values of a box plot 
but histograms are not as easy to interpret as box plots when comparing two or more batches 
of data.

Some distributions may be fairly symmetrical while others may be skewed – with values 
spread out on one side of the middle more than the other. The histogram in Figure 6.3a 
represents a fairly symmetrical distribution. This kind of distribution is what one might 
expect when measuring the heights of a sample of pupils of the same age. By contrast, the 
histogram in Figure 6.3b represents a skewed distribution, with values clustered more at the 
upper end.

This kind of distribution, with values skewed towards the right, is typical when there is some 
kind of ‘ceiling’. A distribution of the heights of a random sample of people from babies 
to adults would have a ‘ceiling’ effect: adults tend not to go over a certain height, while the 
heights of babies and children would be spread out over lower values.

The box plots for these two distributions are shown in Figure 6.3c. The shape of the box 
plot on the left indicates that it is a roughly symmetrical distribution, since the median is 
approximately in the middle of the box and the lengths of the lines above and below the box 
are about equal. The box plot on the right clearly shows a skewed distribution, with the lower 
part being ‘stretched out’ and the upper part being ‘squashed together’.
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Figure 6.3  Comparing distributions

(a)  Histogram representing a fairly symmetrical 
          distribution

(c)  Using box plots to compare the two distributions
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It may seem intuitively obvious that, in any distribution, roughly half of the values will be 
below average, and half above average. However, this is not always the case. If the median is 
taken as the average then it will be true: the median splits the set of data into two, so there 
are equal numbers of values above and below the median. However, if the arithmetic mean is 
taken as the average then the number of values above and below the mean will depend on the 
shape of the distribution.

This is illustrated by the box plots in Figure 6.3c. For the first box plot, the distribution is 
fairly symmetrical and the mean is approximately the same as the median: the numbers of 
values above and below the mean are about the same. However, for the second box plot, 
the distribution is positively skewed and the value of the mean lies below the median: for this 
distribution there are more values above the mean than below it. 

6.8	 Are there any unusual values?
An outlier is a value in a set of data that seems to be unusually large or unusually small in 
comparison with most of the other values. For repeated measurements, an outlier may be the 
result of a mistake and is often disregarded. For measurements on a sample of individuals, an 
outlier may indicate a value that is of particular interest. There are no hard-and-fast rules for 
how to identify and deal with outliers – it will depend on the context.
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Note that ‘outlier’ is a statistical term that can be used to describe unusual values in any 
kind of distribution. The term anomaly (or ‘anomalous value’) is also used in school science, 
though usually in the context of repeated measurements rather than for individuals in a 
population. For example, a bowhead whale has a particularly long lifespan for a mammal but 
it is not generally regarded as being an ‘anomaly’ (see Section 8.3 Analysing a batch of data on 
page 77).

The heights of pupils in the sample shown in Figure 6.1 ranged from 137 cm to 168 cm. 
Suppose another value was added to this – a very low one of 48 cm. The value stands out 
as very different from the rest. One possibility is that it is a mistake – perhaps the actual 
value was 148 cm and it was written down incorrectly. If a value is a mistake then it should 
be corrected or removed. Another possibility is that the value is indeed correct but unusual. 
In this particular example, it is unlikely that there would be a pupil of this height but, 
in other situations, it is quite possible that there may be an unusual value that genuinely 
represents a special case. Identifying and displaying such outliers can be useful as there can be 
interesting and important reasons why they are very different from the rest of the values. (See 
Section 8.3 Analysing a batch of data on page 77 for further details.)

6.9	 Basic ideas in probability
A deeper understanding of variability can be gained by using ideas about probability, since 
randomness is an underlying cause of the variation. Probability is an important topic of 
study in 11–16 mathematics, though in science at this level it appears very little, except for 
some basic ideas related to genetics. However, in science itself, probabilistic ideas have a very 
significant place – both in understanding a wide variety of phenomena and in the design of 
experiments and handling measurement uncertainty. Pupils will meet these ideas much more 
in post-16 science.

A simple example of something that produces random outcomes is tossing a coin. The 
outcome cannot be predicted but there is an equal chance of getting a head or a tail. This is 
described as saying that the probability of getting the head is ½, 0.5 or 50%. The probability 
of getting a tail is the same. The sum of these two probabilities (½ +  ½) is equal to 1. A 
probability of 1 means that something is certain to happen, i.e. the coin will either land as a 
head or as a tail (ignoring the very unlikely outcome that it lands exactly on its edge).

If a coin is tossed and a head is obtained then the probabilities of getting a head or a tail 
on the second toss are still the same. The outcome of the second throw is not affected by 
the outcome of the first throw. Each coin toss is therefore called an independent event. 
(A dependent event is one whose probability is affected by the outcome of another event.) 
Many people do not find this idea at all intuitive and believe that if a coin is tossed five times 
and it lands as heads every time then the probability of getting a tail the next time will be 
much higher. However, since these are independent events, the probability of a head is still ½ 
(assuming it is a ‘fair’ coin).

If you toss a coin a very large number of times (say a billion times) then you would expect 
the proportions of heads and tails to be very close to 50% of each. However, if you only toss 
a coin 10 times (a small sample size), you might get 5 of each, but it is also quite likely you 
will get a different proportion, such as 4 heads and 6 tails. The larger the sample of tosses, the 
more likely you are to get closer to half being heads and half being tails.

If a coin is tossed twice, there are a total of four possible outcomes: HH, HT, TH and TT. 
These are shown in Figure 6.4 (this is known as a sample space).
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Figure 6.4  Outcomes of tossing a coin twiceFigure 6.4 - Combined events - two coin tosses

H T

H HH HT

T TH TT

Figure 6.5 - Combined events -probabilities and frequencies

H T

H ¼ ¼

T ¼ ¼

H T

H 25% 25%

T 25% 25%

H T

H 30% 19%

T 27% 24%

1s
t 

to
ss

2nd toss

A pair of coin tosses, consisting of two separate events, is an example of a combined event. 
The probability of a combined event can be calculated by multiplying together each of the 
probabilities of the separate events but only if these are independent events. So, for a pair 
of coin tosses, the probability of getting a head on the first toss is ½ and the probability 
of getting a head on the second toss is also ½. The probability of throwing two heads 
is therefore ½ ́  ½=¼. The probabilities for each of the four outcomes are shown in 
Figure 6.5a. All of them are ¼. This means that in a very large number of coin tosses, you 
would expect there to be 25% of each of the four combinations, as shown in Figure 6.5b.

Figure 6.5  Probabilities and percentage frequencies
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(c)  A possible outcome for 
           100 pairs of coins tosses
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For a smaller number of pairs of coin tosses, you would not expect to get 25% of each 
combination. Figure 6.5c shows a possible outcome for 100 pairs of coin tosses. As the 
number of pairs of tosses increases, the more likely it is that the proportions will approach 
25% of each.

These ideas about the outcomes of coin tossing are a direct analogy for the way that the 
outcomes of genetic crosses are predicted (and as represented using a Punnett square). The 
outcome of a single coin toss corresponds to a particular allele, while the pair of coin tosses 
corresponds to the pair of alleles inherited from each parent.

So far, we have looked at the outcomes of a single coin toss and of a pair of coin tosses. This 
can be continued, looking at the probabilities of each of the outcomes for three, four or more 
sets of coin tosses. The mathematical calculations get rather more difficult but the principle is 
just the same. Figure 6.6 shows the probabilities of possible outcomes for various numbers of 
coin tosses, expressed in terms of ‘number of heads’.

For example, Figure 6.6a shows that, for a single coin toss, there are two outcomes: 0 heads 
(i.e. a tail) or 1 head. The probability of each is 0.5. 

Figure 6.6b shows that, for two coin tosses, there are three outcomes: 0 heads (i.e. TT), 1 head 
(i.e. HT, TH) and 2 heads (HH). These probabilities are 0.25, 0.5 and 0.25, respectively.

Figure 6.6c shows the outcomes for three coin tosses and Figure 6.6d shows the outcomes for 
four coin tosses. For sets of four coin tosses, the most likely outcome is to get 2 heads (and 
thus 2 tails). Much less likely, though still quite possible, is to get 0 heads or 4 heads.
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Figure 6.6  Probabilities of outcomes from various numbers of coin tosses

(a)  One coin toss (b)  Two coin tosses (c)  Three coin tosses (d)  Four coin tosses
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We can carry on looking at larger and larger numbers of coin tosses. Figure 6.7 shows the 
probabilities of all the outcomes for sets of 10 coin tosses. It shows that 5 heads (and thus 
5 tails) is the most likely but several other combinations can occur quite often; for example, 
getting 3 heads has a probability of over 0.1. The probability of getting 9 or 10 heads in 
10 throws, however, is very low.

Figure 6.7  Probabilities of outcomes from 10 coin tosses

(a)  A bar chart (b)  Drawing a curve through the values
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With this larger number of values, it is interesting to see the shape of the graph obtained by 
drawing a curve through these data points (Figure 6.7b). This shows the classic ‘bell-shaped’ 
curve – the sort of distribution that you get, for example, by measuring the heights of people 
in a population. Most people are of middling height with smaller numbers of very short or 
very tall people.

The shapes are similar for the same underlying reason. The heights of people, like the 
outcomes of coin tossing, are determined by a combination of many random events. The 
same is true for the variability due to measurement uncertainty (e.g. repeated measurements 
of the time for a marble to run down a slope) and for the natural variability in the 
characteristics of any population (e.g. the times for different people to run a 100 m race).

6.10	 Estimating risks
In everyday language, the words ‘hazard’ and ‘risk’ are used more or less interchangeably with 
the word ‘danger’. However, they are also technical terms with precise meanings. A hazard is 
something that is potentially harmful to people, property or the environment. A risk relates 
to the probability of harm occurring when exposed to a hazard. For example, a river near a 
house is a hazard because it can potentially cause flooding. The risk of the land around the 
house being flooded by the river might be assessed as a 1% annual probability.
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There are essentially two ways in which risks can be assessed. Thinking about coin tosses is a 
simple way to illustrate this. If we want to know what the ‘risk’ is of getting two heads when 
we toss two coins, there are two ways of working this out.

One method is to collect a lot of data, by noting the outcomes of many pairs of coin tosses. 
The more coin tosses we do, the more likely the estimate is to be accurate. With a very large 
number of pairs of coin tosses, the ‘risk’ of getting two heads is found to be ¼.

The other method is to work out the probability from what we know about the behaviour of 
the coins. For each coin toss, the probability of getting a head is ½. Thus the ‘risk’ of getting 
two heads is ½ ́  ½=¼.

In the real word, both of these methods are used to calculate risks. When a lot of data is 
available, the first method can be used. The risk of getting lung cancer from smoking, or 
the risk of certain injuries in road accidents, can be found by analysing statistics that are 
routinely collected. 

Other risks relate to events that happen rarely or have never happened. Calculating the risks 
of damage to a nuclear power station due to an earthquake, or the risks to human health on 
a mission to Mars, cannot be calculated by analysing large data sets of previous cases. Instead, 
they are calculated by combining the estimated probabilities of the events that lead to the 
outcomes being assessed.

Estimating risks in the real world is of course much harder than working out probabilities 
in coin tossing. For example, despite having a great deal of data about people’s health and 
behaviour, it took a long time and much analysis before the link between smoking and lung 
cancer was established. In the case of nuclear power stations, different people may make 
different estimates of risk because they make different assumptions about the contributions to 
the risk.

6.11	 Interpreting reports about risk
Everything that we do entails risk. Running, walking or any kind of physical activity involve 
the risk of injury, while lack of exercise is a risk to health. In order to make decisions, one 
needs to weigh up the sizes of different risks. There are frequent media reports concerning 
risk, such as the impact of new drugs or the effects of diet on health. However, people may 
have difficulties in understanding the figures, and the studies are often reported in a way 
that makes them hard to interpret. This can have a serious effect on the ways that risks 
are perceived.

For example, here are some headlines about cancer risks:

•	 ‘CT scans in childhood can triple the chance of developing brain cancer’

•	 ‘One drink a day increases breast cancer risk by 5%’.

The figures themselves may not be easy for many people to compare because they are 
expressed in different ways. A ‘tripling’ of a risk can re-expressed as a ‘200% increase’ 
(conceptually not a simple calculation) and, put this way, perhaps it sounds more alarming 
(after all, ‘200’ is a bigger number than ‘3’). When both figures are expressed as percentages, 
they can be compared more easily:

•	 ‘CT scans in childhood can increase the risk of developing brain cancer by 200%’

•	 ‘One drink a day increases breast cancer risk by 5%’.
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A casual reading of these figures might suggest that childhood CT scans are a much bigger 
cancer risk than having one drink a day (40 times bigger).

However, the problem is that the figures in these headlines are referring to relative risk and 
not absolute risk. Your risk of being hit by a meteorite is extremely small indeed (an absolute 
risk); if for some reason this risk increases 100 times (a relative risk), this would still represent 
a very small risk of being hit. So, it is hard to interpret a relative risk without knowing the 
size of the underlying absolute risk.

For the two examples above, the relevant absolute risks are:

•	 about 1 in 10 000 children aged 0–9 develop brain tumours or leukaemia

•	 about 11% of women who do not drink develop breast cancers.

Again, some care is needed in comparing these figures for the absolute risk. Some people 
think that ‘1 in 10 000’ is a bigger risk than ‘1 in 100’ (since 10 000 is a big number), or 
that ‘1 in 10’ is smaller than ‘5%’. Re-expressing the second risk allows the two risks to be 
compared more easily:

•	 about 1 in 10 000 children aged 0–9 develop brain tumours or leukaemia

•	 about 1100 in 10 000 women who do not drink develop breast cancers.

The story presented here has been simplified, but the principle should be clear to see. The 
absolute risk in the second example is far, far bigger than the first, even though the relative risk 
is lower. Using all the available data and some intricate calculations, studies have worked out 
the increase in numbers of cases:

•	 an extra two cases of cancer for every 10 000 children given CT scans

•	 an extra 60 cases of breast cancer for every 10 000 women who regularly have a drink.

The ‘tripling’ of cancer due to CT scans now seems to be less alarming than the headline may 
have suggested to many people. Although the relative risk is very high, the numbers affected 
are fairly small because of the low underlying absolute risk.
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7	 Looking for relationships: 
line graphs

Many investigations in science are concerned with finding relationships between continuous 
variables. After collecting a set of data, the data points for two variables can be plotted on a 
graph, and then a line drawn that best expresses the apparent relationship suggested by the 
data. This is called a line of best fit.

7.1	 Types of relationship and shapes of line graphs
Before looking at drawing lines of best fit, it is useful to consider the possible kinds of 
relationship between variables that might be found. Figure 7.1 shows a number of different 
shapes of graphs – this selection is not intended to be comprehensive, but sufficient to 
illustrate a variety of relationships.

To avoid confusion among pupils, it is important to be aware that the term ‘line’ has a more 
precise meaning in mathematics than the way it is often used in science. In mathematics, 
a line (and thus a line of best fit) is, by definition, straight. In science, however, it is quite 
common to talk about ‘straight lines’ and ‘curved lines’ (which in mathematics would be 
called ‘lines’ and ‘curves’). Changing habitual ways of talking is hard. A good compromise in 
science might be to refer to ‘straight lines’ and ‘curves’, though it may be hard to avoid using 
the term ‘curved line of best fit’. Even though most of the graphs in Figure 7.1 show curves 
rather than straight lines, they are still all referred to as line graphs.

Some relationships in science can be described by relatively simple mathematical equations, 
while others are more complex. This section focuses just on the shapes of the line graphs and 
on fitting straight lines and curves to data points by eye; the use of mathematical equations is 
discussed later (see Chapter 9 Scientific models and mathematical equations on page 87).

Key words: line graph, variable, linear, linear relationship, non-linear, gradient, origin, 
intercept, proportional, rate, line of best fit, interpolation, extrapolation, outlier.
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Figure 7.1  A compendium of line graphs

7.2	 Developing a descriptive language
It is helpful for pupils to develop ways of identifying and describing the nature of the 
relationships shown in line graphs. This does not mean simply describing the superficial 
shape of the line, which they might find quite easy to do. What is harder for them is to 
relate the shape to the meaning of the relationship between the real-world variables. This 
needs building up with practice, using graphs they draw from their own results, as well as 
completed graphs presented to them. The following discussion includes suggested phrases 
that can be used as part of such descriptions. 

When interpreting a graph, the first thing always is to pay attention to what the graph 
is about, i.e. the variables involved, as indicated by the labels on the axes, and any other 
information. It is also essential to be aware of the range for each axis, since this affects the 
visual appearance of the graph (see Section 4.3 Choosing the range of each axis on page 37). 
This is particularly important when comparing two or more similar graphs.

Note that since the graphs shown below are intended to be ‘abstract’ they do not have the 
axes labelled with particular variables. The discussion will therefore be in terms of changes to 
‘x’ and ‘y’. In a real context, the names of the variables would be used to give the descriptions 
a real-world meaning.
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When thinking about the meaning of the line on a graph, a starting point is to identify 
whether the line goes up or down. For the graphs in Figure 7.2a, ‘as x increases, y increases’; 
for those in Figure 7.2b, ‘as x increases, y decreases’. This distinction is a very basic aspect of 
a relationship, and indeed does not really need a graph to be able to identify – it would be 
obvious from the table of results. Note that some graphs do not simply go either up or down, 
and these will be discussed later.

Figure 7.2  Increasing and decreasing

(a)

(b)

What we can see from a line graph, but would not be so obvious from the table of results, 
is whether the line is straight or curved. So, we could talk of a ‘straight line graph’ for which 
‘as x increases, y steadily increases’ (Figure 7.3a) or for which ‘as x increases, y steadily decreases’ 
(Figure 7.3b). The term ‘steadily’ is a rather informal term but it gives a good sense of what 
is happening.

Figure 7.3  Graphs with straight lines

(a) (b)

The relationships shown in ‘curved graphs’ are more complex to describe. One possibility is 
that ‘as x increases, y increases slowly at first and then more rapidly’ (Figure 7.4a) or that ‘as x 
increases, y increases rapidly at first and then more slowly’ (Figure 7.4b). Similar descriptions 
can be used for the curved graphs that show a ‘decrease of y with x’.

The formal term to describe a straight line graph is linear, whether or not it goes through 
the origin, and the relationship between the two variables is called a linear relationship. 
Similarly, the relationship shown by a curved graph is called non-linear.
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Figure 7.4  Graphs with curves

(a) (b)

When we talk of a variable changing ‘slowly’ or ‘rapidly’, we are using these terms in a relative 
sense to describe how the gradient (or slope) of a line changes. For a linear relationship, the 
gradient at any point along the line is the same. For a curve, the gradient varies at different 
points along the curve.

An important feature of a relationship is whether the line goes through the origin (the point 
at which the values of x and y are zero). Figures 7.5a and 7.5b are both linear relationships. 
However, while the first shows ‘a straight line that goes through the origin’, the second shows ‘a 
straight line with an intercept on the y-axis’. The point at which it meets the y-axis is called the 
intercept. Figure 7.5a shows a proportional relationship, i.e. doubling the value of x doubles 
the value of y. So ‘as x increases, y increases, and y is proportional to x’. However, although 
Figure 7.5b represents a linear relationship, it is not a proportional relationship, since the line 
does not go through the origin. (See Section 9.11 Mathematical equations and relationships in 
science on page 99.)

Figure 7.5  Straight line graphs and the origin

(a) (b)

Finally, while some curves may appear to increase indefinitely (Figure 7.6a), others may ‘level 
out towards a maximum’ (Figure 7.6b). Similarly, other curves showing decreasing values may 
‘level out towards a minimum’ (Figure 7.6c).

Figure 7.6  Some curves tend towards a maximum or a minim level
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The graph shown in Figure 7.7 provides an opportunity to put all of these ideas together. 
Relevant phrases might be: ‘curved graph’, ‘intercept on y-axis’, ‘as x increases, y increases’, ‘y 
increases slowly at first, then more rapidly, then slows down again’ and ‘reaches a maximum level ’.

Figure 7.7  A more complex shape

So far, all of the graphs discussed have had a line that either always goes up or always goes 
down (the technical term for this is monotonic). Other relationships are more complex, with 
lines than can go up and down (called non-monotonic). 

The last two examples are included to illustrate this. Figure 7.8a could represent the height 
of a ball as it is thrown in the air and then falls to the ground. Figure 7.8b could represent 
the amplitude of a loudspeaker producing a musical note. Since the pattern repeats, it can be 
called periodic (another example would be a sine wave).

Figure 7.8  Some curves are neither ‘up’ nor ‘down’

(a) (b)

7.3	 Gradients and rates of change
Many graphs have ‘time’ as the variable on the horizontal axis, and indeed the language that 
we use reflects this. For example, Figure 7.9a shows a graph that represents the progress of a 
chemical reaction between a carbonate and an acid to produce carbon dioxide. At first, the 
increase in the volume of carbon dioxide is quite fast but then it slows down. Notice how a 
graph reflects the way we use language to describe how the sizes of things can go up and down 
(represented on the vertical axis) and happen one thing after another in time (represented from 
left to right on the horizontal axis).

On a graph that shows a change over time, the steepness of the line represents how fast the 
change is happening. In other words, the gradient of the line represents a rate of change. Since, 
this is the rate of change at a particular instant in time, it is called an instantaneous rate of change.

Figure 7.9b shows the way that the current through a filament bulb varies with the potential 
difference across it. The curve has a shape that has some similarities to the previous graph 
(note that it is not linear and does not follow Ohm’s Law). Even though it does not represent 
a change over time, we may still use the same language to describe it – rising rapidly at first 

y

0
  0                                                    x

y

0
  0                                                    x

y

                                                        x



The Language of Mathematics in Science: A Guide for Teachers of 11–16 Science	 69

Chapter 7: Looking for relationships: line graphs

and then more slowly. It is also possible to use the term ‘rate’ to describe the gradient here as 
well, i.e. as ‘the rate at which current changes with potential difference’). When talking about 
relationships between variables in 11–16 science, however, rate is usually only used to refer to 
a rate of change over time.

Figure 7.9  Some changes are against time, others are not
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7.4	 Lines of best fit: linear relationships
Sometimes it happens that when the data points from an experiment are plotted, a straight 
line can be drawn which appears to pass exactly through all of the points. More usually, even 
if the underlying relationship is linear, the data points do not lie exactly on a straight line 
because of measurement uncertainty. In such a case, a line of best fit may be found that 
passes as close as possible to the points. 

It is important to be clear about the meaning of a fitted line for data of this kind. It has a very 
different meaning to the line segments on a graph where each pair of data points are joined; 
it also has a very different meaning from a line of best fit on a scatter graph (see Section 3.6 
Line graphs and scatter graphs: two related quantities on page 29).

These differences arise because of the differences in the nature of the data. For ‘line 
graph’ type data, the data points may not all lie on the fitted line because of measurement 
uncertainty. For ‘scatter graph’ type data, the differences from a fitted line are due to 
differences between individuals in a population. The distinction between these two different 
kinds of variability is discussed in Section 6.1 Where does variability come from? on page 50.

Figure 7.10a shows a set of eight data points plotted on a graph (for convenience, the 
discussions in this chapter on drawing lines of best fit use ‘abstract’ graphs with no variables 
specified). Inspecting these points by eye suggests that this may be a linear relationship, so a 
straight line could be fitted. A useful technique with points plotted on graph paper is to hold 
the paper almost at right angles to your face and then to rotate the paper to look down along 
the direction of the data points. This is a quick way of seeing how close the points would be 
to a straight line.

To draw a line on graph paper, it is better to have a transparent ruler so that all of the data 
points can be seen. Figure 7.10b shows a line of fit drawn by eye. It seems to be quite a good 
fit as it passes close to all of the points. But what is meant by a line of best fit?
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Figure 7.10  A good line of fit

(a) (b)

Figure 7.11 shows two lines that are most definitely not good lines of fit. The ‘badness’ of fit 
has been deliberately exaggerated in each case to illustrate the criteria for fitting a good line. 
In Figure 7.11a, the gradient of the line matches the gradient of the data points but the line 
is too high. In the good line of fit, there were data points on both sides of the line, but here 
they are all below the line. By contrast, in Figure 7.11b, there are similar numbers of points 
above and below the line but the gradient of the line is wrong. All the points below the line 
are on the left and all the points above the line are on the right.

Figure 7.11  What makes a bad line of fit?

(a)  Too high (b)  Wrong gradient

So, when drawing a line by hand on graph paper, there are two things to think about: getting 
the height of the ruler right and getting its slope right, so that the line is as close to all the 
points as possible. Sometimes a line may pass though some of the points but this is not 
essential – it is possible to have a line of best fit that does not actually pass through any of 
the points.

There are no hard-and-fast rules for producing a ‘best fit’ by eye; it is a matter of judgement 
to find the one that looks best. When a line of best fit is done by a computer, various rules 
are used to decide exactly what is meant by ‘as close to all the points as possible’. However, 
even with a computer, there is no single method to produce a ‘unique’ best line, and different 
rules may produce different ‘best’ lines. 

7.5	 Interpolation and extrapolation on a line graph
The graph in Figure 7.10a had eight data points, each representing a value for y corresponding 
to a particular value of x. Once a line of best fit has been drawn, it is possible to use it to 
estimate a value for y corresponding to any value for x. Figure 7.12a illustrates how a value 
for y can be ‘read off’ the graph for a value of x that is in between the original data points. 
This technique is called interpolation. It can be used, for example, in calibrating instruments 
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such as thermometers – a number of measurements are made to create a calibration curve (or 
straight line), and this is used to infer all of the other values.

Getting good estimates from interpolation assumes that the fitted line is a good 
representation of what happens in between the measured data points, and that there are 
no unexpected variations. The more measurements that are made, the greater the chance 
that interpolation will give good estimates. In fact, since the fitted line may compensate for 
measurement uncertainties in the data, it can actually give better estimates of the y values for 
the original data points than the actual data values themselves. This is the reason that a fitted 
line is used to find the gradient on such a graph, and not just the two extreme values. 

Figure 7.12  Using the fitted line to estimate values

(a)  Interpolation (b)  Extrapolation

The fitted line may also be extended in order to make estimates of values beyond the range of 
the original data. Figure 7.12b shows the line being extended to higher values, and a value of 
y being ‘read off’ the graph for a value of x that is greater than the original range. This process 
is called extrapolation. For example, a graph showing the extension of a spring against 
applied force could be extended to find the extension of the spring for a greater force. Care 
needs to be taken with extrapolation, however, since the linear relationship may not apply 
outside the data range. In the example of the spring, a point is reached when it becomes 
‘overstretched’ and the extension is no longer proportional to the force. 

Extrapolation can also be done by extending the line towards lower values. In such a case, it 
may be of interest to find out whether it passes through the origin, or, if it does not, to find 
the value of the intercept on the x-axis or y-axis.

7.6	 Origin and intercepts: the meaning of where a fitted line 
starts
If a straight line on a graph goes through the origin then this represents a proportional 
relationship (see Section 5.2 Proportionality and visual representation on page 41). Deciding 
whether the first data point is at the origin, i.e. (0, 0), is important.

Figure 7.13a shows a proportional relationship – it is a graph of current against potential 
difference for a resistance that follows Ohm’s Law. Here, it is apparent that the line must go 
through the origin – if there is no potential difference then there is no current. This could 
also easily be confirmed by reading these values from the voltmeter and ammeter. For other 
relationships, we may know that the line must start at the origin, even though in practice 
there might not be any measurements to show this. Care needs to be taken, however, about 
making any assumptions about the values at the intercepts, and a line only drawn through 
the origin when in principle it could not be otherwise.
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Figure 7.13b shows how the length of a spring varies with force. It is a linear relationship 
(it obeys Hooke’s Law) but it does not pass through the origin, so it is not a proportional 
relationship. Usually in such a case, the intercept on the y-axis has a real-world meaning 
– here, it represents the length of the spring when the value on the x-axis (the force on 
the spring) is zero. In other words, it is its ‘normal’ length when no force is acting on it to 
stretch it.

If the original length of the spring is subtracted from all of the data values, this gives the 
extension of the spring: plotting this against force would be a straight line through the origin, 
and this a proportional relationship.

In this example, the intercept on the y-axis can easily be found by measurement – it is simply 
the length of the spring with no force. However, in other situations, the intercept cannot be 
measured directly though it may be found by extrapolation.

Figure 7.13  Lines can meet the axes in different ways
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(c) (d)
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Figure 7.13c represents a graph of the temperature of the reaction mixture during an 
exothermic chemical change, such as the reaction of zinc with acid in an insulated container. 
It is not easy to find the ‘true’ value of the temperature rise, because the reaction takes a little 
time to complete and during this time energy escapes from the warm reaction mixture. After 
the initial temperature rise and the completion of the reaction, the mixture starts to cool. 
Since the container is insulated, the cooling is relatively slow, and approximates to a linear 
decrease over a small time period. By extrapolating this line backwards, the ‘true’ temperature 
rise (i.e. if there had been no cooling) can be estimated from the intercept on the y-axis.

An interesting historical use of extrapolation was to estimate the temperature at absolute zero 
(and this is still a valuable practical activity in post-16 physics). The solid line in Figure 7.13d 
represents the relationship between the volume of a fixed mass of gas and its temperature. 
As the gas is cooled, its volume decreases. The theoretical interpretation of this is that the 
decrease is due to the molecules of the gas moving more slowly. If the molecules stop moving 
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at absolute zero then the volume would approach zero (assuming the volume of the molecules 
themselves is negligible). Extrapolating the line back to zero volume (here, this means to the 
point where it meets the x-axis), gives a temperature of about -273 °C, which is close to the 
accepted value.

7.7	 When a straight line does not fit all the points
Not every graph has data points that clearly all lie close to a straight line. Two possibilities 
which may arise are:

•	 the underlying relationship is linear but there are outliers, perhaps due to mistakes in 
measurement – they may need to be ignored or rechecked

•	 the underlying relationship is not linear – the line of best fit is a curve, not a straight 
line.

The more data that are collected, the clearer the nature of the relationship becomes. 
Figure 7.14a shows a graph with just four data points. It is not obvious what the line of best 
fit might be. Perhaps it is best to draw a straight line close to all of the points (Figure 7.14b), 
or perhaps treat the final point as an outlier and draw a straight line through the other three 
(Figure 7.14c), or perhaps it is best to draw a curve close to the points (Figure 7.14d). With 
only four points, you cannot really decide.

Figure 7.14  It is hard to identify a relationship with a small number of data points

(a) (b)

(c) (d)

Figure 7.15a shows the original four points but now includes an additional four points 
to give eight in total. It is now much clearer to see a pattern – it looks like this is a linear 
relationship but that one of the measurements is an outlier. Figure 7.15b shows a straight line 
as a line of best fit, using seven of the points and ignoring the outlier.

If a computer is used to find a fitted line, for example on a spreadsheet graph, it may use all 
eight points including the outlier. The fitted line would then slope more steeply, and by eye 
would not look like a good fit.
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Figure 7.15  Ignoring an outlier when drawing a line of best fit

(a) (b)

These additional four points were necessary to identify the relationship, but if they had been 
different then the relationship might have looked very different. Figure 7.16a also shows the 
original four points but with a different set of four points added. Now, the pattern of data 
points suggests that the line of best fit should be curved. As before, if the data points are 
plotted on graph paper, holding it up and looking along the points by eye is a good way of 
getting a sense of the shape. Drawing good curves by hand needs practice – it can be done 
using a sweeping movement of the hand with the wrist or elbow as a pivot ‘inside’ the curve, 
or by using an instrument known as a ‘flexible curve’.

Figure 7.16  A curved line of best fit

(a) (b)

If, instead of a curve, a straight line had been drawn that passed as close to the points as 
possible then the points in the middle would have been below the line and the ones at each 
end above. This is a sign that a curve would be a better fit.

Drawing curves is much easier by computer. For example, a formula for a curve could be 
entered into a spreadsheet but the difficulty may be in finding the correct formula that 
produces a good fit. In 11–16 science, straight line graphs are more common, though 
students studying post-16 science come across graphs with curved lines more frequently: in 
particular, in physics, students need to be able to determine the equations of some non-linear 
relationships by using logarithmic scales.

outlier
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8	 Looking for relationships: 
batches and scatter graphs

In the biological sciences, it is quite common to have a data set in which there is an 
underlying variability in the things being measured. This contrasts with the physical sciences, 
where variability is more often due to measurement uncertainty. This leads to differences 
in the way that data are collected (e.g. in thinking about sampling) and the way they are 
analysed (e.g. in dealing with correlations).

8.1	 Different kinds of relationship
Both of the following questions are about how one variable is related to another:

•	 How does the rate of reaction of zinc with hydrochloric acid relate to temperature?

•	 How does the lifespan of mammals relate to their heart rate?

Although these look like rather similar types of question, there are important ways in which 
they are very different.

In the first case, it would be necessary to control all of the variables apart from temperature, 
such as the amount of zinc, the size and shape of the granules, and the volume and 
concentration of the acid. However, having done that, we would expect that for every value 
of the temperature, there would be a unique value of the reaction rate. If the experiment 
were repeated with exactly the same conditions, we would expect that the reaction rate 
would be exactly the same. Of course, the actual values obtained might not be the same 
because of measurement uncertainty. However, this is due to the limitations in the measuring 
equipment or our ability to measure, rather than a difference in the phenomenon itself.

The second question is rather more complex. There are different species of mammal, so 
would it be necessary to collect data for every species, or would it be sufficient to make 
a selection? In addition, what does it mean to talk about the lifespan or heart rate for a 
particular type of mammal, such as a tiger? Different individuals have different lifespans and 
heart rates. Perhaps taking an average for all tigers? But it would be impossible to collect data 
on all tigers, so perhaps just a selection?

What this illustrates is that, in designing the collection of data to help answer this kind of 
question, it is important to consider what to select – in other words, how to sample.

Key words: population, sample, random sample, batch, variability, stem-and-leaf 
diagram, histogram, box plot, median, quartile, range, interquartile range, outlier, 
percentile, scatter graph, variable, correlation, line of best fit.
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8.2	 Populations and samples
To discuss the nature of sampling, a simple artificial example will be used. Suppose you have 
a bag containing a very large number of 1p coins. The composition of 1p coins was changed 
in 1992, so from that year they were magnetic while before then they were not. Without 
using a magnet, how could you estimate the proportion of the old non-magnetic coins 
in the bag? One way would be to check the year of every coin in the bag, but this would 
take a long time, so better would be to check just a small number at random and make a 
guess – a process of sampling. If you drew out just four coins and found that one of them was 
pre-1992, you might not be very confident in guessing the proportion in the bag. If however, 
you drew out 40 coins and found that 10 of them were pre-1992, you would be more 
confident in saying that the bag might contain around 25% of these coins.

There are two important technical words that can be applied to a situation like this. The 
collection of all the coins in the bag is known as a population. The smaller set of coins 
selected for checking is known as a sample. Note that, in statistics, the term ‘population’ 
has a different meaning to that in everyday language – it means a set of things of a similar 
nature that is of interest as a whole. In everyday language, a ‘population’ usually refers to a 
group of people or animals living in a particular area. In a statistical population, however, the 
‘individuals’ could be any kind of object or event.

For example, if the group of interest were the ‘population of people in the UK’ (an everyday 
expression) then this would also be a ‘population’ in the statistical sense. In a factory making 
computer chips, however, the quality control department might define a ‘population’ as 
the group of chips that are made each day, in order that a sample of these can be selected 
and tested. Not all ‘populations’ consist of objects: one could think of a ‘population’ of 
earthquakes, in which each earthquake is seen as an ‘individual’.

‘Populations’ can apply at different levels. A research study on bees might be interested in 
all the beehives in a particular area. This collection of beehives is the ‘population’, and each 
beehive is an ‘individual’. Another study might just look at the worker bees within a single 
hive. Here, the population is the collection of all the worker bees in that hive, and each 
worker bee is an individual.

When sampling from a population, it is important that the sample is representative of the 
population. For a collection of 1p coins in a bag, this is fairly easy: coins can just be taken 
out of the bag at random. This means that every coin in the bag has an equal chance of being 
selected, and thus the sample is representative of the population. Such a sample is called a 
random sample. Giving the bag a good shake and not always choosing a coin from the same 
part of the bag would be a good way of ensuring this.

Another important principle in sampling is the effect of sample size. The larger the sample 
size, the more likely it is that the sample will be representative of the population. With 
samples of just a few coins, there will be a lot of random variation. A sample of a large 
number of coins is more likely to have a composition similar to that of the whole set of 
coins. Choosing a small sample means that collecting the data is easier, but with larger 
samples there is more confidence that the data are representative. In practice, sample size is 
determined by the balance between these two factors.

Sampling a bag of coins is straightforward but collecting data to answer the question ‘How 
long does a tiger live?’ is rather more complex. The ‘population of tigers’ is harder to define 
than the ‘population of coins’. The ‘individuals’ in the population would be individual tigers, 
but which ones? Those that die in a particular year? It is also harder to collect appropriate 
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data and to design sampling procedures that ensure the samples are representative. However, 
even though the problem is more difficult, the same basic principles of sampling still apply. 
Having found a ‘typical value’ for the lifespan of a tiger, this might then be compared to the 
lifespans of other mammals (polar bears, chimpanzees, grey squirrels, and so on) to see what 
factors influence the lifespan of different types of mammal. This could involve sampling from 
a population of ‘all types of mammals’ in which the individuals would be ‘types of mammal’.

8.3	 Analysing a batch of data
The table in Figure 8.1 shows the potential lifespan of some selected types (or ‘orders’) of 
mammals. The whole data set in fact contains 75 selected mammals listed alphabetically 
(taken from an article on the internet), but just the first few are given here.

A data set like this is sometimes called a batch 
of data – it contains a set of values about the 
same kind of thing. The values therefore relate 
to just a single quantity or variable. Such data 
sets are discussed in Chapter 6 Dealing with 
variability, in which it is shown how a box 

plot is a useful visual display for getting a sense 
of the size and variability of the values. Note 
that the term ‘batch’ is commonly used in data 
analysis, though not so much at school level: it 
is used here, as it is very helpful to have a simple 
term to describe this kind of data.

This section looks at the techniques for drawing 
a single box plot for one batch of data. The 
way in which relationships can be explored by 
analysing more than one batch of data is discussed later in Section 8.5 Comparing batches of 
data on page 81.

Drawing a box plot requires the values to be put in order of size, so that five summary values 
can be identified (see Section 6.6 How much do the values vary? on page 56). Ordering 
values is easy to do with a computer spreadsheet but if the values only exist on paper it would 
take a long time to enter them.

A quick and simple way of organising a large set of data by hand is to construct a stem-and-

leaf diagram. In this method, the values are first roughly sorted in order of size along a ‘stem’, 
and then in a second pass, the individual values (the ‘leaves’) are put into exact order.

Figure 8.2a shows how to make a start: a vertical ‘stem’ is drawn with each digit representing 
‘tens of years’ (i.e. 0, 1, 2, 3 . . . 8 represent 0, 10, 20, 30 . . . 80 years). The final digits of each 
of the data values are the ‘leaves’ (with units of ‘years’), written in the appropriate positions 
on the ‘stem’.

So, the first value in the list of data is 60 years: to the right of the ‘6’ on the stem is written ‘0’. 
The next data value is 5 years, and to the right of the ‘0’ on the stem is written ‘5’. This is 
continued for each of the values in the batch, writing each new ‘leaf ’ to the right of the 
existing ones. Thus, in Figure 8.2a, next to the ‘1’ on the stem, are the digits ‘3 9’ – these 
represent two data values, 13 years and 19 years.

Figure 8.1  Potential lifespans of mammals

Mammal Lifespan (years)

African elephant 60

African giant rat   5

African porcupine 20

Alpine marmot 13

American beaver 19

American bison 23

Asiatic or Indian elephant 78

Australian sea lion 12

Aye-aye   7

Bactrian camel 26

Baikal seal 56

etc.
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Figure 8.2b shows the diagram with all 75 values entered. Putting values into groups like this 
is similar to the construction of frequency tables from discrete data (see Section 3.2 Using 
tables to process data on page 24). The shape of this diagram is similar to the outline of a 
histogram ‘on its side’. It shows that there are many values in the intervals 10–19 years and 
20–29 years, so this gives a sense of the ‘typical’ lifespan.

Figure 8.2  Making a stem-and-leaf diagram

(a)  The first few values (b)  All values added

Figure 2 - Making a stem-and-leaf diagram

a) the first few values b) all values added

8 8
7 7 8 3
6  0 6 0
5 5 6 0 5 5 0
4 4 0 6 7 2 7 0 9 5
3 3 4 1 0 0 0 2
2  0 2 0 3 6 8 4 0 0 0 3 0 4 0 0 1 9 7 0 4 0 6
1  3 9 1 3 9 2 8 6 7 6 2 7 5 4 5 6 4 6 5 3 5 6 0 4 2
0  5 0 5 7 9 7 6 6 4 3 5 7 3

stem:  10 years stem: 10 years
leaves:  1 year leaves: 1 year

Figure 3 - Re-ordering and finding summary values

a) ordered b) summary values

8 8
7  3 8 7 3 8
6  0 6 0
5  0 0 5 5 6 5 0 0 5 5 6
4  0 0 2 5 6 7 7 9 4 0 0 2 5 6 7 7 9
3  0 0 0 1 2 4 3 0 0 0 1 2 4 
2  0 0 0 0 0 0 0 0 0 1 3 3 4 4 4 6 6 7 8 9 2 0 0 0 0 0 0 0 0 0 1 3 3 4 4 4 6 6 7 8 9
1  0 2 2 2 3 3 4 4 4 5 5 5 5 6 6 6 6 6 7 7 8 9 1 0 2 2 2 3 3 4 4 4 5 5 5 5 6 6 6 6 6 7 7 8 9
0  3 3 4 5 5 6 6 7 7 7 9 0 3 3 4 5 5 6 6 7 7 7 9

stem:  10 years stem: 10 years
leaves:  1 year leaves: 1 year

Figure 2 - Making a stem-and-leaf diagram

a) the first few values b) all values added

8 8
7 7 8 3
6  0 6 0
5 5 6 0 5 5 0
4 4 0 6 7 2 7 0 9 5
3 3 4 1 0 0 0 2
2  0 2 0 3 6 8 4 0 0 0 3 0 4 0 0 1 9 7 0 4 0 6
1  3 9 1 3 9 2 8 6 7 6 2 7 5 4 5 6 4 6 5 3 5 6 0 4 2
0  5 0 5 7 9 7 6 6 4 3 5 7 3

stem:  10 years stem: 10 years
leaves:  1 year leaves: 1 year

Figure 3 - Re-ordering and finding summary values

a) ordered b) summary values

8 8
7  3 8 7 3 8
6  0 6 0
5  0 0 5 5 6 5 0 0 5 5 6
4  0 0 2 5 6 7 7 9 4 0 0 2 5 6 7 7 9
3  0 0 0 1 2 4 3 0 0 0 1 2 4 
2  0 0 0 0 0 0 0 0 0 1 3 3 4 4 4 6 6 7 8 9 2 0 0 0 0 0 0 0 0 0 1 3 3 4 4 4 6 6 7 8 9
1  0 2 2 2 3 3 4 4 4 5 5 5 5 6 6 6 6 6 7 7 8 9 1 0 2 2 2 3 3 4 4 4 5 5 5 5 6 6 6 6 6 7 7 8 9
0  3 3 4 5 5 6 6 7 7 7 9 0 3 3 4 5 5 6 6 7 7 7 9

stem:  10 years stem: 10 years
leaves:  1 year leaves: 1 year

Having ordered the values along the stem, the next step is to put the ‘leaves’ in order, 
as shown in Figure 8.3a. Reading from left to right starting at the bottom and going up 
the stem, the whole batch of values is now completely ordered. (The easiest way to do 
this is to cross off the digits on the unordered diagram as they are entered on the new 
ordered diagram.)

Figure 8.3  Ordering and finding summary values from a stem-and-leaf diagram

(a)  Ordered (b)  Summary values

Figure 2 - Making a stem-and-leaf diagram

a) the first few values b) all values added

8 8
7 7 8 3
6  0 6 0
5 5 6 0 5 5 0
4 4 0 6 7 2 7 0 9 5
3 3 4 1 0 0 0 2
2  0 2 0 3 6 8 4 0 0 0 3 0 4 0 0 1 9 7 0 4 0 6
1  3 9 1 3 9 2 8 6 7 6 2 7 5 4 5 6 4 6 5 3 5 6 0 4 2
0  5 0 5 7 9 7 6 6 4 3 5 7 3

stem:  10 years stem: 10 years
leaves:  1 year leaves: 1 year

Figure 3 - Re-ordering and finding summary values

a) ordered b) summary values

8 8
7  3 8 7 3 8
6  0 6 0
5  0 0 5 5 6 5 0 0 5 5 6
4  0 0 2 5 6 7 7 9 4 0 0 2 5 6 7 7 9
3  0 0 0 1 2 4 3 0 0 0 1 2 4 
2  0 0 0 0 0 0 0 0 0 1 3 3 4 4 4 6 6 7 8 9 2 0 0 0 0 0 0 0 0 0 1 3 3 4 4 4 6 6 7 8 9
1  0 2 2 2 3 3 4 4 4 5 5 5 5 6 6 6 6 6 7 7 8 9 1 0 2 2 2 3 3 4 4 4 5 5 5 5 6 6 6 6 6 7 7 8 9
0  3 3 4 5 5 6 6 7 7 7 9 0 3 3 4 5 5 6 6 7 7 7 9

stem:  10 years stem: 10 years
leaves:  1 year leaves: 1 year

Figure 2 - Making a stem-and-leaf diagram

a) the first few values b) all values added

8 8
7 7 8 3
6  0 6 0
5 5 6 0 5 5 0
4 4 0 6 7 2 7 0 9 5
3 3 4 1 0 0 0 2
2  0 2 0 3 6 8 4 0 0 0 3 0 4 0 0 1 9 7 0 4 0 6
1  3 9 1 3 9 2 8 6 7 6 2 7 5 4 5 6 4 6 5 3 5 6 0 4 2
0  5 0 5 7 9 7 6 6 4 3 5 7 3

stem:  10 years stem: 10 years
leaves:  1 year leaves: 1 year

Figure 3 - Re-ordering and finding summary values

a) ordered b) summary values

8 8
7  3 8 7 3 8
6  0 6 0
5  0 0 5 5 6 5 0 0 5 5 6
4  0 0 2 5 6 7 7 9 4 0 0 2 5 6 7 7 9
3  0 0 0 1 2 4 3 0 0 0 1 2 4 
2  0 0 0 0 0 0 0 0 0 1 3 3 4 4 4 6 6 7 8 9 2 0 0 0 0 0 0 0 0 0 1 3 3 4 4 4 6 6 7 8 9
1  0 2 2 2 3 3 4 4 4 5 5 5 5 6 6 6 6 6 7 7 8 9 1 0 2 2 2 3 3 4 4 4 5 5 5 5 6 6 6 6 6 7 7 8 9
0  3 3 4 5 5 6 6 7 7 7 9 0 3 3 4 5 5 6 6 7 7 7 9

stem:  10 years stem: 10 years
leaves:  1 year leaves: 1 year

The shape of the ordered stem-and-leaf diagram is the same as before but it is now possible 
to find the summary values for the box plot. These are indicated in Figure 8.3b. The highest 
and lowest values are easy to identify (78 and 3 years). Since there are 75 values in the whole 
batch, the median is the 38th value (with 37 values below it and 37 values above it): it is 
20 years.

To find the upper and lower quartiles, the upper and lower halves of the data are each taken 
as including the median, so they each have 38 values. (Note that this convention is not 
universal – some sources say that the upper and lower halves are taken without including 
the median.) Since this is an even number, the ‘middle’ consists of two values (the 19th and 
20th), and a mean is taken of these two. This gives an upper quartile of 31 years (from 30 
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and 31 years, rounded up from a mean of 30.5 years), and a lower quartile of 14 years (from 
the values 14 and 14 years). 

The five summary values are therefore:

•	 highest value:	 78 years

•	 upper quartile:	31 years

•	 median:	 20 years

•	 lower quartile:	14 years

•	 lowest value:	   3 years

From these summary values a box plot can be drawn. Figure 8.4 shows the easiest way 
of doing this by hand. The first step is to draw an appropriate vertical scale and then five 
horizontal lines corresponding to the summary values, as shown in Figure 8.4a. The next step 
is to draw the vertical lines to create the box, and connecting the highest and lowest values, as 
shown in Figure 8.4b. The completed box plot is shown in Figure 8.4c.

Figure 8.4  Drawing a box plot: potential lifespans of mammals

(a)  Draw horizontal lines for summary values (b)  Connect with vertical lines (c)  The completed box plot
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The box plot gives a very clear sense of the variability of mammalian lifespans. While the 
median value is 20 years, there is a very large variation, with a range of nearly 80 years (in 
fact from 3 to 78 years). As noted in Section 6.6 How much do the values vary? on page 56, 
a better measure of spread is the interquartile range, i.e. the range of values included within 
the box on the box plot. Its value here is 16 years (the difference between the upper quartile 
and the lower quartile: 30-14 years). One half of the mammals in this batch have potential 
lifespans within this range.

The box plot also shows that the batch of data is skewed, with the upper part being ‘stretched 
out’ and the lower part being ‘squashed together’. This contrasts with the display in 
Chapter 6 (Figure 6.3) which skewed in the opposite direction.

Note that, in mathematics, pupils may have seen stem-and-leaf diagrams drawn so that values 
of the stem increase downwards. Many books on analysing data adopt the convention that 
values of the stem increase upwards. This is the convention that has been used here, since the 
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stem then matches the scale used for the box plot, and it corresponds to the terms used to 
describe the summary points (e.g. the highest value is at the top, and so on).

Sometimes, batches of data contain extreme values that are very different from the rest of the 
values. These are known as outliers. For example, a bowhead whale has a lifespan of about 
200 years. This was not included in the original batch of data but, if it had been, how could 
this value be handled? Figure 8.5a shows the box plot of the original batch drawn on a new 
scale that extends upwards to 200 years. Figure 8.5b shows the box plot redrawn with the 
upper line extended to the new highest value. Such a plot could be misleading since it may 
give the impression that there are quite a few types of mammal with lifespans approaching 
200 years.

In Figure 8.5c, the original box plot has been drawn, with the new value indicated as an 
outlier by showing a separate data point labelled ‘bowhead whale’. This gives a much better 
impression of how different this particular type of mammal is from the others in the batch. 
Such a plot prompts questions to be asked about the reasons for this difference, perhaps 
related to the whale’s size, habitat, diet, and so on.

Figure 8.5  Dealing with outliers: potential lifespans of mammals

(a)  Original box plot on the new 
            scale

(b)  New value added as the 
           highest value

(c)  New value added as an outlier
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There are no hard-and-fast rules about how to identify what should be considered an outlier. 
Sometimes there will be values that are very much bigger or very much smaller than the rest of 
the values and which are clearly outliers; sometimes all of the values in a batch lie fairly close 
together where there are clearly no outliers. Between these extremes, the decision is a matter of 
judgement depending on the nature of the data and on what is of interest in the analysis.

Pupils may encounter the term percentile in science lessons. This is a similar idea to a 
quartile. You can think of quartiles as the values that split a batch of data into four parts; in 
the same way, the percentiles are the values that split a batch of data into a hundred parts. 
For example, the World Health Organization has data on the weights of babies at different 
ages. For baby girls aged 12 months, it gives the value of the 90th percentile as 10.5 kg. This 
means that 90% of these babies are under this weight, while 10% are over. Since a median 
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is the value in the middle of a batch, it is the 50th percentile (50% above and 50% below). 
The upper and lower quartiles correspond to the 75th and 25th percentiles respectively. Using 
percentiles can be useful when looking at the way that values are distributed in a batch in a 
more detailed way than simply using quartiles.

8.4	 Dealing with more than one batch of data
The previous section looked at the analysis of a single batch of data. There are two distinct 
types of situation where you might be dealing with more than one batch of data. These are 
illustrated in Figure 8.6.

The first set of data, represented in part in Figure 8.6a, consists of two batches of data: the 
lifespans for two different types of mammals (rodents and primates). Here, the data are about 
the same quantity for two different samples.

The second set of data, represented in part in Figure 8.6b, also consists of two batches of 
data: the mean heart rates and mean lifespans for selected types of mammals. Here, however, 
the data are about two different quantities related to the same sample.

So, although both sets of data consist of two batches, they have different structures, and this 
leads to different types of questions that can be asked about the data, for example:

(a)	 What is the relationship between lifespan and type of mammal (rodent and primate)?
This is a question about the relationship between a continuous variable and a 
categorical variable.

(b)	 What is the relationship between lifespan and heart rate for different types of mammal?
This is a question about the relationship between two continuous variables.

Since these are different types of question involving data of different structures, the data are 
analysed in different ways. These are discussed in the next two sections.

8.5	 Comparing batches of data
Box plots are particularly useful when analysing two or more batches of data, such as the 
tables shown in Figure 8.6a, rather than just a single batch. The lifespans of rodents and 
primates can be compared by drawing a box plot for each of these batches side-by-side, as 
shown in Figure 8.7.

Figure 8.6  Different structures of data

(a)  Lifespans for rodents and primates 

Rodent Lifespan (years)

African giant rat   5

African porcupine 20

etc.  

Primate Lifespan (years)

Aye-aye   7

Chimpanzee 55

etc.  

same quantity 
two different samples

(b)  Mean heart rates and mean lifespans for different types of mammal

Mammal Heart rate (beats/min) Lifespan (years)

Badger 138 11

Cat 120 15

etc.   

two different quantities 
same sample
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As for a single box plot, the same questions can  
be asked about each of these box plots individually: 
What is the typical lifespan for each of these types of 
mammal and how much do they vary? In addition, the 
two batches can be compared. It seems that primates 
typically live about twice as long as rodents (the median 
for primates is about twice that for rodents), but there is 
a lot of overlap. For example, the median value for 
rodents is a bit higher than the lowest value for primates. 
This means that a bit over a half of the rodents live 
longer than the shortest lived primate.

Box plots become even more useful when comparing 
larger numbers of batches. For example, Figure 8.7 could 
be extended to include other types of mammal, and this 
would enable a great deal of data about lifespans to be 
compared quite easily.

8.6	 Judging whether a difference is 
significant
Box plots can be useful when analysing the results of experiments involving a ‘control’ group 
and a ‘treatment’ group. For example, when looking at the effects of a fertiliser on the height 
of plants, one would expect there to be a variation in the heights of individual plants in both 
groups. However, the question is whether, overall, the plants in the two groups seem to be of 
different heights, i.e. are the medians of the two groups noticeably different?

If there is no overlap of the ‘boxes’ (i.e. of the interquartile ranges) in the two box plots then 
it might seem that the batches are very different and the fertiliser had an effect. However, 
if there is a lot of overlap of the boxes and the medians are quite close then the observed 
difference may simply be due to chance.

In post-16 biology, students learn about more formal statistical tests of significance to judge 
whether two batches might really be different or whether the difference could have arisen by 
chance. Instead of using the median and the interquartile range in the comparison of box 
plots, these tests use the mean and the standard deviation. However, the principles of these 
formal tests are similar to how judgements are made by eye using box plots, so representing 
the data visually in this way forms a good basis for further understanding.

Note that the word ‘significant’ has both an everyday meaning and a technical statistical 
meaning. In everyday language, a significant effect is often used to mean a big effect. However, 
in statistics, a significant effect means an effect that is unlikely to have happened by chance: 
it does not necessarily indicate that it is a big effect. This is a subtle idea, and certainly goes 
beyond what pupils need to know in 11–16 science. However, because ‘significance’ is a term 
that is encountered in media reports and can cause confusion, it is discussed in outline here.

The idea can be illustrated by thinking about coin tosses (see Section 6.9 Basic ideas in 
probability on page 59). A fair coin is one that has an equal probability of landing as a head or 
a tail. If you tossed a coin 10 times, you might get equal proportions of heads and tails (i.e. 5 of 
each), but you would not be surprised if you got another outcome (e.g. 7 heads and 3 tails). 
There is random variation in the outcomes. However, if you tossed the coin many thousands of 
times, you would expect the proportions of heads and tails to be very close to equal.

Figure 8.7  Lifespans of rodents 
and primates compared
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Now, suppose you were given an unfair or ‘biased ’ coin, which had an 80% probability of 
landing heads. If you did not know whether it was biased or not, you might start to suspect 
after only a few throws that it was not a fair coin. The greater the number of tosses, the more 
you might believe that it was biased. Eventually you might say that you were ‘fairly certain’. 
You could never be completely certain, because an outcome with a very large proportion of 
heads could still be possible, even though it might be highly unlikely.

Suppose you were given another biased coin, but this time much less so, with just a 51% 
probability of heads. From a small number of coin tosses, you would not notice that it was 
biased. By counting a larger number, you might suspect something, but you would need a 
much larger sample of coin tosses with this coin before you might say you were ‘fairly certain’.

What you are really trying to judge here when using a biased coin is whether you might 
have got these results using a fair coin. If the proportion of heads seems rather too large, 
you might say that that you are ‘fairly certain’ that the outcome could not have happened 
by chance using a fair coin. With some complex calculations, it would be possible to turn 
‘fairly certain’ into a value of a probability; for example, ‘there is a 95% probability that this 
outcome could not have happened by chance’. Another way of saying the same thing is that 
there is only a 5% probability that the outcome could have happened by chance.

This is the essence of statistical significance. If an outcome is reported as being ‘significant at 
the 5% level’, it means that the probability of the outcome happening by chance is only 5% 
or less. If the reported level of significance is lower (e.g. 1%), it means that there is an even 
smaller probability that the outcome could have happened by chance.

These ideas are important in experiments involving a ‘control’ group and a ‘treatment’ group. 
Suppose that these were the results of two different studies on fertilisers (with a significance 
level of 5%):

•	 With fertiliser A, there was a 7% bigger growth in the treatment group than in the control 
group. The sample sizes were small and the result was not significant.

•	 With fertiliser B, there was a 0.1% bigger growth in the treatment group than in the 
control group. The sample sizes were large and the result was significant.

What these results illustrate is that with small sample sizes you might not get a significant 
result even with a large effect. With large samples sizes you might get a significant result, even 
though the effect is small.

So, although the result for fertiliser A is not significant, the difference in the growth seems 
quite big. It might be worth doing another study with larger samples to see whether the 
effect might be real, or whether it just happened by chance. For fertiliser B, the result was 
significant, but the effect is so small that it may not justify the cost of using the fertiliser.

In summary, box plots can be used to compare samples and look at the sizes of the differences 
between them. Statistical tests are used to judge whether the differences are significant, in 
other words, whether it is unlikely they could have occurred by chance.

8.7	 Relationships between variables: scatter graphs and 
correlation
Scatter graphs are useful for looking at the relationship between two variables of the same 
sample of individuals. The table shown earlier in Figure 8.6b illustrates this kind of data. 
The sample consists of selected types of mammals and the quantities are mean heart rate and 
mean lifespan. Figure 8.8. shows a scatter graph of these data.
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This graph suggests that there is some  
relationship between lifespan and heart rate. It 
seems that, very roughly, as the heart rate of a 
mammal increases, its lifespan tends to decrease.

However, it is certainly not an exact relationship. 
It is very different, for example, to the relationship 
between the mass suspended from a spring and 
the length of the spring. Here, it is straightforward 
to control all the variables that affect the length 
of a spring, and just look at the effect of the 
suspended mass. For every value of mass, there is a 
unique value for the length of the spring.

For the data on mammals, it is much harder to control all of the variables that could affect 
a dependent variable. In such a case, it may be possible to see the effect of an independent 
variable on the dependent variable, but it will be masked by the effects of additional variables 
that are not controlled. We would not expect that for every value of one variable there would 
be a unique value for the value of the other. There is variability in the population.

The distinction between these two examples is also discussed in Section 3.6 Line graphs and 
scatter graphs: two related quantities on page 29. (Note: for the purposes of the discussion 
in that section, the graph of the mammalian data showed fewer data points.)

One way of explaining the apparent relationship between lifespan and heart rate would be 
that every mammal tends to have the same fixed number of heart beats in its lifetime. So, if 
the time between heart beats doubles then the lifespan doubles too. 

Figure 8.9 has been drawn to test this idea. The quantity plotted along the horizontal axis is 
the time between heartbeats. This has been calculated from: time between heartbeats in 
seconds = 60 / heart rate in beats per minute. 

Re-expressed in this way, the pattern of the 
data points now shows a general upward slope. 
The graph shows that, as the time between 
heart beats increases, the lifespan increases. The 
pattern also appears less curved: since it is a bit 
more ‘straight’, it suggests that, very roughly, if 
the time between heart beats doubles then the 
lifespan doubles too. It is clearly not possible to 
fit a straight line that passes through or close to 
all of these points, though it can still be useful to 
draw a line of best fit on a scatter graph like this. 
(This is discussed later in Section 8.8 Drawing a 
line of best fit on a scatter graph on page 85.)

A correlation is a way of expressing the strength of the relationship between two variables. If 
a scatter graph appears to show that there is a relationship between two variables then we can 
say that they are correlated.

In 11–16 science, pupils only need to be able to talk about correlation qualitatively, but it 
is worth being aware that it is not just a ‘vague’ idea. A correlation coefficient is a value that 
can be calculated for certain types of data, and students of post-16 biology encounter this 

Figure 8.8  A scatter graph of mean lifespan 
against mean heart rate for some selected 
types of mammal
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Figure 8.9  A scatter graph of mean lifespan 
against time between heartbeats for different 
types of mammal
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quantitative aspect. Calculating a correlation coefficient gives a value between +1 and -1. 
A positive value indicates that, as one variable increases, the other also tends to increase; a 
negative value indicates that, as one variable increases, the other tends to decrease. A value of 
0 indicates no correlation between the variables.

Figure 8.10 shows a series of scatter graphs with varying degrees of correlation. These can be 
described qualitatively using the following terms:

•	 positive correlation: as one variable increases, the other tends to increase as well

•	 negative correlation: as one variable increases, the other tends to decrease

•	 no correlation: there does not appear to be any relationship between the variables

•	 strong or weak correlation: to describe how closely the variables appear to be related.

Figure 8.10  Correlations (positive and negative) of different strengths

+1 +0.8 +0.5 +0.2 0
+1 +0.8 +0.5 +0.2 0

‐1 ‐0.8 ‐0.5 ‐0.2 0

+1 +0.8 +0.5 +0.2 0

‐1 ‐0.8 ‐0.5 ‐0.2 0

+1 +0.8 +0.5 +0.2 0

‐1 ‐0.8 ‐0.5 ‐0.2 0

+1 +0.8 +0.5 +0.2 0

‐1 ‐0.8 ‐0.5 ‐0.2 0

+1 +0.8 +0.5 +0.2 0

‐1 ‐0.8 ‐0.5 ‐0.2 0

−1 −0.8 −0.5 −0.2 0

+1 +0.8 +0.5 +0.2 0

‐1 ‐0.8 ‐0.5 ‐0.2 0

+1 +0.8 +0.5 +0.2 0

‐1 ‐0.8 ‐0.5 ‐0.2 0

+1 +0.8 +0.5 +0.2 0

‐1 ‐0.8 ‐0.5 ‐0.2 0

+1 +0.8 +0.5 +0.2 0

‐1 ‐0.8 ‐0.5 ‐0.2 0

+1 +0.8 +0.5 +0.2 0

‐1 ‐0.8 ‐0.5 ‐0.2 0

Thus, for these graphs, we could talk about a strong positive correlation between two 
variables (+0.8), a weak negative correlation between two variables (-0.5), or no apparent 
correlation (0). (Note that the variables in the graphs labelled ‘+1’ and ‘-1’ are perfectly 
correlated – they show the points you would expect on straight line graphs.)

An important point that is often made is that correlation does not imply causation. If A and B 
are correlated then it is possible that A causes B, but another possibility is that B causes A. It 
may be that they are not causally related to one another at all, but that they are both causally 
related to a third variable C. It is also possible that the apparent correlation between them is 
just coincidental and happened by chance.

Note that a correlation coefficient is a value that indicates the size of an apparent relationship. 
In more advanced statistical work, a further test needs to be done to judge whether the effect 
is significant or whether it could have arisen by chance. The larger the sample size, the more 
likely an effect is to be significant.

8.8	 Drawing a line of best fit on a scatter graph
The data points on a scatter graph are usually, as the name indicates, scattered. This is 
because of the underlying variability in the population concerned. For this reason, the data 
points do not lie close to any line of best fit.

It is, however, still possible to draw a line of best fit on a scatter graph, though it is important 
to be clear about its meaning. It has a different meaning to the lines of fit discussed in 
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Chapter 7 Looking for relationships: line graphs. The difference arises because of the differences 
in the nature of the data. For ‘line graph’ type data, the data points may not all lie on the 
fitted line because of measurement uncertainty. For ‘scatter graph’ type data, the differences 
from a fitted line are due to differences between individuals in a population. The distinction 
between these two different kinds of variability is discussed in Section 6.1 Where does 
variability come from? on page 50.

Figure 8.11 shows the same scatter graph as in  
Figure 8.9, but here a line of best fit has been 
added. A straight line has been chosen, since 
the distribution of data points does not look 
particularly ‘curvy’ The criteria for fitting the 
line are that it should have similar numbers of 
points above and below the line and the 
gradient of the line should reflect the 
distribution of the points (as discussed in 
Section 7.4 Lines of best fit: linear relationships 
on page 69). Deciding on where to draw the line when the points are very scattered 
involves more judgement than when they are close to a line. It is not so easy to decide on 
which is the ‘best’ line.

The straight line on the graph can now be used to make estimates or predictions. For example, 
suppose you were asked what lifespan a mammal might have if it had a ‘time between 
heartbeats’ of 1 second. The dotted lines in Figure 8.11 show that the best guess would 
be about 14 years. This is only a rough estimate but it is a better guess than if we had no 
information at all about the time between heartbeats. It is not a perfect guess since the data 
points do not lie exactly on the line because of the variability in the population. 

In this example, a straight line was chosen as the line of best fit because the distribution of the 
data points suggested it (the formal term for such a line is a regression line). In mathematics, 
pupils are generally given data for which a straight line is a good fit; in science, pupils may 
need to decide whether a straight line or a curve is the best fit. For example, in the scatter 
graph shown in Figure 3.10, a curve would be a better fit for the data than a straight line.

Figure 8.11  A line of best fit on a scatter graph
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9	 Scientific models and 
mathematical equations

In science, a graph shows a relationship between quantities in the real world. Some 
graphs are produced by collecting and plotting experimental data. However, some graphs 
are representations of how we might imagine the world to be, based on certain sets of 
assumptions or ‘scientific models’. Underlying the behaviour of these models are the 
mathematical equations that breathe life into our imagined worlds.

9.1	 Equations, formulae and expressions
Before going further, it is useful to clarify the meaning of a number of terms about which 
there is sometimes confusion. Central to this chapter will be a discussion of the manipulation 
and graphical representation of equations (also referred to as algebraic equations). An 
equation is a mathematical statement that indicates the equality of the expressions to the left 
and right of the equals (=) sign. Figure 9.1 shows some examples of equations.

All of these equations contain variables but they 
differ in their nature. In equations (a), (b) and (c) 
the variables are abstract, but in equations (d), (e) 
and (f ) the variables represent physical quantities. 
An equation that shows the relationship between 
physical quantities is called a formula. So, every 
formula is an equation, though not every equation 
is a formula.

Note that although equation (d) looks different to 
equation (a) because it uses words (density, mass and 
volume) rather than symbols (x and y), this is not 
what makes it a formula. Equations (e) and (f ) both 
represent the same formula for calculating kinetic 
energy. What makes both of them formulae is that the variables, whether expressed as words or 
as symbols, relate to physical quantities. (The advantages and disadvantages of using words or 
symbols are discussed in Section 9.5 The real-world meaning of a formula on page 93.)

Key words: equation, algebraic equation, formula, expression, variable, constant, 
coefficient, brackets, order of operations, subject of a formula, proportional, directly 
proportional, constant of proportionality, linear relationship, linear equation, inversely 
proportional, exponential relationship, inverse square relationship, line graph, rate, 
intercept, gradient, tangent, area under the line (on a graph).

Figure 9.1  Examples of equations

(a) = -1
3
x

y

(b) = +y mx c

(c) + - =22 5 3 0x x

(d) =
mass

density
volume

(e) = ´ ´ 2kinetic energy ½ mass velocity

(f) = 2
k  ½E mv
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Pupils should also be aware that the terms formula and equation have additional meanings in 
chemistry: a chemical formula (e.g. H2O) is a symbolic way of showing the relative numbers 
of atoms in a substance, while a chemical equation is a symbolic representation of the 
rearrangement of those atoms that occurs in a chemical reaction. The idea of ‘balance’ applies 
to both types of equation: in an algebraic equation the values on each side are equal, and in a 
chemical equation the numbers of atoms on each side are equal.

An expression is a combination of numbers and variables that may be evaluated – 
expressions do not contain the equals (=) sign. (Note that ‘evaluating an expression’ means 
finding its numerical value – a very different meaning to ‘evaluating a science investigation’.) 
So, the equations listed above are not themselves expressions, but they do contain expressions. 
Examples of expressions are shown in Figure 9.2.

Notice that, in an algebraic expression such as 5x, the convention is that there is no 
multiplication sign between the ‘5’ and the ‘x’, even though this means ‘5 multiplied by x’. 
However, for a word expression, the multiplication sign is included for clarity, for example 
½ ́  mass ́  velocity2.

When such an expression is expressed symbolically, the multiplication signs are omitted and 
it is written as ½mv2 (writing ½ ́  m ́  v2 could be confusing as ´ could be mistaken for x). 
Since these symbols do not have a space between them, all physical quantities are represented 
by just a single letter (e.g. m for mass, v for velocity, and so on). Additional information 
about a variable that needs to be included can be indicated using a subscript or superscript 
(e.g. Ek). Note that this contrasts with units, which often have more than one letter (e.g. cm 
or kg) and are always written with spaces in between each unit.

Similarly, using the division sign (¸ ) explicitly is not the only way to represent division. The 
following expressions are the same:

mass¸ volume mass / volume
mass

volume

The third way of representing division in an expression is generally preferable because it 
makes the relationship clearer to see. This is particularly the case when there are more than 
two values or variables in the expression.

9.2	 Variables, constants and coefficients
Expressions may include letters that represent variables, constants and coefficients, and it is 
also useful to clarify the meaning of these words, particularly as they are used differently in 
mathematics and science.

An example of a variable is represented by the letter x in this equation:

= -1
3
x

y

Figure 9.2  Examples of expressions

-1
3
x

3
x

- -23 5 2x x 5x
mass

volume
2velocity 2½mv
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It is a variable because it can take on a range of values. In this example, as the value of x 
varies, y also varies, and so y is a variable too.

In science, the term ‘variable’ is also used in this sense, being represented by a letter or 
word(s) in an algebraic equation. For example, in the following equation, mass and volume 
are both variables and could each take on a range of values:

=
massdensity

volume

These values would give a range of values for density, and so this too is a variable. However, 
the term ‘variable’ is used in a broader sense in science. It can be used to refer to any factor 
that could be varied in a scientific investigation, whether or not it forms part of an algebraic 
equation. Such equations represent only quantitative variables, and often variables are 
qualitative (categorical). Quantitative variables (continuous or discrete) may be identified at 
the start of an investigation, to find out whether there is a relationship that can be expressed 
as an algebraic equation; even if none is found, they are still referred to as ‘variables’.

Note that in published texts the letters that represent variables are shown in italics, but 
not the letters that represent units. So, mass may be represented by the letter m, while the 
abbreviation for metre is m. This distinction is not made when writing by hand.

An example of the use of a constant in mathematics is illustrated in the equation:

y = mx +  c

This is the general equation of a straight line, where m and c represent constants (m is the 
gradient of the line and c is the intercept). Substituting different numerical values for m and 
c gives different straight lines; for example, y= 2x+1 represents one particular straight line, 
and y= 3x+2 represents another one.

In a scientific investigation, we may refer to ‘keeping a variable constant’ (i.e. the control 
variable). For example, the current through an electrical resistor depends on two variables – 
its resistance and the voltage applied across it. In an investigation, we could look at the effect 
on the current of changing the resistance while keeping the voltage constant, or changing the 
voltage while keeping the resistance constant.

The word ‘constant’ is also used in science to refer to those physical quantities that really are 
‘constant’, and where they always have the same value whenever they are used. Examples of 
such physical constants include the speed of light in a vacuum (about 3 ́  108 m s−1) and the 
Avogadro constant (about 6.02 ́  1023 mol−1), Note that although these are constants, this does 
not mean they are just numbers – they are values that have units.

The word coefficient can easily be confused with constant. In the expression 3x2, the 
coefficient of x2 is ‘3’, and in the expression 5x, the coefficient of x is ‘5’. The term does not 
just apply to numerical values; so, for example, in the expression ½mv2, as well as saying that 
½ is the coefficient of mv2, we could say that ½m is the coefficient of v2. In science, however, 
the word is also often applied to a value that is constant for a particular material under 
certain conditions but that is different for different materials (e.g. the coefficient of expansion 
or the coefficient of thermal conductivity).
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9.3	 Operations and symbols
An expression may contain symbols that represent operations. Two common operations are 
addition and subtraction, and these are represented by the familiar plus (+) and minus (-) 
signs. Multiplication and division are also common operations, though the signs that can be 
used to represent them (́  and )̧ are often not used explicitly (see Section 9.1 Equations, 
formulae and expressions on page 87).

A subtle point, but one that becomes much more important for post-16 science, is that the 
plus (+) and minus (-) signs are actually used in two distinct ways. For example, take these 
two expressions:

5-3      -3

In the first of these, the minus symbol is acting as an operator – it is telling us to subtract 
the value 3 from the value 5. In the second of these, it is telling us that this is a negative 
value. The same applies to the ‘plus’ sign, which has different meanings in the following 
two expressions.

5 3      +3

Note that while the ‘minus’ symbol is always used to indicate a negative value, often we do 
not explicitly use the ‘plus’ symbol to indicate a positive value, and simply write ‘3’.

This distinction is essential in understanding expressions that involve the addition and 
subtraction of positive and negative values, for example:

(+6)+ (-4)- (-2)

One area of 11–16 science where pupils may encounter such expressions is the use of vectors 
to describe and analyse motion (see Sections 10.5–10.8).

In an equation, the equals (=) sign indicates that the expressions on each side are equal. 
There are a number of other useful symbols that are used to compare expressions, and these 
are shown in Figure 9.3.

The first three symbols (=, >, <) are clear-cut in their 
meaning and are probably the ones most commonly 
encountered.

The next two symbols (≥, ≤) can be useful in defining 
class intervals (see Section 6.4 Displaying larger sets 
of values on page 53). For example, the phrase 
‘those pupils whose height is 150 cm or above but 
less than 160 cm’ can be expressed more simply as 
150 cm ≤ height ≤ 160 cm.

An approximate value can be indicated by using the 
symbol ‘~’; for example, approximately 3 g can be 
written as ~3 g. The symbol ‘»’ is a combination of ‘
=’ and ‘~’ so, instead of writing ‘mass= ~3 g’, it is simpler to write ‘mass » 3 g’.

The last two symbols (≫, ≪) are not common in 11–16 science. One example of their 
use might be in a situation where one is handling an algebraic equation that includes an 
expression such as mA+mB, where these represent the masses of two objects, A and B. If the 
mass of A is very much bigger than the mass of B then the expression might be simplified, by 

Figure 9.3  Examples of symbols used 
to compare expressions

y = x ‘y equals x’ or ‘y is equal to x’

y > x ‘y is greater than x’

y < x ‘y is less than x’

y ≥ x ‘y is greater than or equal to x’

y ≤ x ‘y is less than or equal to x’

y ≈ x ‘y is approximately equal to x’

y ≫ x ‘y is much greater than x’

y ≪ x ‘y is much less than x’
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assuming that the mass of B can be ignored and that the total mass can be taken as just the 
mass of A. This can be represented as:

since mA ≫ mB , then mA+mB  » mA

9.4	 Calculations using formulae: order of operations
Many of the formulae that pupils encounter in 11–16 science involve just one operation. 
For example, density can be calculated by dividing mass by volume – a single operation. In 
formulae where there is more than one operation, it is essential that they are carried out in the 
correct order. 

Here is a simple example to illustrate this:

4+2 ́  3

A different value is obtained depending on 
whether the addition or multiplication is done 
first, as shown in Figure 9.4.

It might seem common sense that the first of these is 
correct since the operations are done in order from 
left to right, and the result should be 18. Indeed, if 
this series of numbers and symbols were entered into most calculators, the result given would 
be in fact be 18. However, this is not the convention that has been adopted in mathematics, 
in which multiplication takes precedence over addition. The correct value is therefore 10.

Pupils need to be aware of how to handle the order of operations in order to be able to make 
calculations and to rearrange formulae. The explanations for these will be given and then 
summarised at the end of this section.

In an expression involving only 
addition and subtraction, the operations 
are carried out in order from left to 
right (Figure 9.5a). A different order, 
for example, from right to left, may 
give a different (and incorrect) result 
(Figure 9.5b).

In an expression involving only multiplication and division (using ´ and ¸  signs), these 
operations are also carried out in order from left to right (Figure 9.6a). As before, a different 
order may give an incorrect result (Figure 9.6b). However, this expression could be written 
more clearly and less ambiguously by avoiding the use of the ¸  sign (Figure 9.6c). The top 
and bottom expressions are evaluated first before the final division.

Figure 9.4  Which order is correct?

(a) Addition first

4 + 2 × 3 
6 × 3 

18

(b) Multiplication first

4 + 2 × 3 
4 + 6 

10

Figure 9.5  Addition and subtraction only

(a) Left to right (correct)

4 + 3 − 2 − 1 
7 − 2 − 1 

5 − 1 
4

(b) Right to left (incorrect)

4 + 3 − 2 − 1 
4 + 3 − 1 

4 + 2 
6

Figure 9.6  Multiplication and division only

(a) Left to right (correct)

3 × 4 ÷ 2 ÷ 2 
12 ÷ 2 ÷ 2 

6 ÷ 2 
3

(b) Right to left (incorrect)

3 × 4 ÷ 2 ÷ 2 
3 × 4 ÷ 1 

3 × 4 
12

(c) Clearer (and correct)

´
´

3 4
2 2

12
4
3
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If an expression contains a combination of these  
operations then multiplication and division take 
precedence over addition and subtraction 
(Figure 9.7a). If, however, a calculation requires 
that an addition or subtraction should take 
precedence then this can be done using 
brackets. (Figure 9.7b). Evaluating expressions in brackets takes precedence over all 
other operations.

It would be possible to add brackets to 10-2 ́  3 giving the expression 10- (2 ́  3), and it 
would still give a value of 4. The brackets, though, are unnecessary since multiplication 
already has precedence. Even though they are not needed, it would not be incorrect to use the 
brackets here, so it may be better to include brackets when in doubt or for additional clarity.

Pupils should also be able to handle calculations  
involving indices (i.e. those that include 
expressions of the form xn in which x is raised 
to the power of n). Indices take precedence over 
all of the operations discussed so far (addition, 
subtraction, multiplication, division) except 
brackets. Figure 9.8a illustrates the precedence 
of an index over a multiplication, while Figure 9.8b shows how brackets take precedence over 
an index.

To summarise these ideas, a rather contrived example of a calculation is shown in Figure 9.9 
to illustrate the order of operations.

This convention is summarised in the widely used mnemonic BIDMAS (Brackets, Indices, 
Division/Multiplication, Addition/Subtraction). An alternative form of the mnemonic is 
BODMAS (where O represents Order or ‘to the power Of ’).

For simplicity, all of these examples have involved only numbers but the same conventions 
about the order of operations apply to the manipulation of algebraic equations. Furthermore, 
in scientific formulae the values have units; making sure that the handling of the units makes 
sense provides an additional check on the correct sequence of operations (e.g. one cannot add 
unlike units).

The use of calculators needs care in making sure that the operations are done in the correct 
order. It is often safer to write down intermediate values – indeed, in scientific calculations, 
these intermediate values are often useful to calculate in any case as they have a real-world 
meaning.

Figure 9.7  Handling brackets

(a) With no brackets

10 − 2 × 3 
10 − 6 

4

(b) With brackets

(10 − 2) × 3 
8 × 3 

24

Figure 9.8  Handling indices

(a) Index takes  
precedence

2 × 32 

2 × 9 
18

(b) Brackets take  
precedence

(2 × 3)2 
62 
36

Figure 9.9  Order of operations

The original expression: 4 + 2 × (5 − 2)2

Expressions inside brackets are evaluated first, to give: 4 + 2 × 32

Next indices are evaluated, to give: 4 + 2 × 9

Then multiplication and division, to give: 4 + 18

Finally, addition and subtraction, to give: 22
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9.5	 The real-world meaning of a formula
It is helpful to think of a formula not just as a mathematical equation but as something that 
‘tells a story’ about the real world. For example, take the formula that defines speed:

=
distancespeed

time

As well being able to substitute values and to calculate a result, pupils should be able to 
interpret what this formula is saying and to check that this makes sense. The formula shows 
that speed is directly proportional to distance: so, in real-world terms, the greater the distance 
that someone walks in a certain time, the greater their speed. It also shows that speed is 
inversely proportional to time: so, the greater the time that someone walks a certain distance, 
the lower their speed. Pupils should be able to see that these real-world interpretations of the 
formula make sense.

The formula above defines the relationship between three variables. Knowing the values 
of any two of the variables means that the third variable can be calculated. The formula 
allows speed to be calculated but rearranging it gives formulae that allow distance and time 
to be calculated (how to rearrange formulae will be discussed in subsequent sections of 
this chapter):

distance = speed ́  time

=
distancetime

speed

Again, in these formulae, pupils should be able to identify directly proportional and inversely 
proportional relationships, and to relate the formulae to real-world interpretations.

There are many formulae used in 11–16 science that involve three variables that are related in 
this way, i.e. through direct and inverse proportion. Other examples include:

=
massdensity

volume

=
mass of substancechemical amount (in moles)

molar mass

force exerted on spring = spring constant ́  extension

Note that the underlying form of all these formulae is the same. Although the last formula 
looks different from the others (the right-hand side shows two variables multiplied 
together), the first two formulae could also each be rearranged to show two variables 
multiplied together. Each of the formulae here, however, is shown in the way it is most 
commonly written.

Note also that some formulae represent definitions whereas others represent empirical 
relationships. For example, the first formula is a definition: it represents the way that density is 
defined. In a definition, the relationship between the variables is exact. The last formula, by 
contrast, represents an empirical relationship (Hooke’s Law), which is an approximation to the 
way that real springs behave.

When pupils first start to use scientific formulae, it is generally better to express these using 
words rather than symbols for the variables, since this helps to emphasise the real-world 
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meaning. As they get older, it is appropriate that they also become familiar with symbolic 
formulae. These have a number of advantages. They are shorter to write down, making them 
easier to manipulate and rearrange. The symbolic form may also be easier to remember: in 
the two versions for kinetic energy below, the symbolic one is visually more recognisable, as 
well as its sound (‘a-half-em-vee-squared’) being more memorable.

kinetic energy = ½ ́  mass ́  speed2	 Ek = ½mv2

The following sections discuss the techniques that can be used to rearrange formulae. Pupils 
need to be able to rearrange a formula if the quantity that they are trying to calculate is not 
‘on its own’ on the left-hand side. The discussion starts with the simplest kind of formula, 
involving only addition and subtraction, before moving on to those involving multiplication 
and division.

9.6	 Rearranging formulae involving addition and subtraction
Suppose that in a class of pupils there are 13 boys and 15 girls. It is not difficult to work out 
that the total number of pupils in the class is 28. More formally, one could represent this as a 
‘formula’ for calculating the number of pupils in a class (Figure 9.10).

Now suppose that, in a different class, we want to work out the number of girls knowing 
that the total number of pupils is 30 and the number of boys is 14. Again, it is not difficult 
to work out the result – there must be 16 girls – but the above formula does not give this 
directly. In order to do this, the formula needs to be rearranged so that ‘number of girls’ 
becomes the subject of the formula, i.e. it is ‘on its own’ and by convention on the left of the 
equals sign. Using our common sense about the situation, we should be able to write down a 
rearranged formula for working out the number of girls (Figure 9.11).

However, most formulae are not as easy to rearrange as this, so it is important for pupils to 
understand the general principles for rearranging formulae, in order to apply these to any 
situation. There are really just two principles – for simplicity, these will be illustrated using 
only numbers at first but they apply in exactly the same way to formulae involving variables. 
Figure 9.12 uses the example of ‘2+3= 5’: the value of the expression on the left is 5 and 
that on the right is 5 – they are equal.

The first principle is that the sides of an equation can be swapped – an equation shows that 
the expression on the left is equal to the expression on the right, so it does not matter in 

Figure 9.10  A simple formula

= +
= +
=

number of pupils number of boys number of girls

13 15

28

Figure 9.11  Rearranging the formula

= -
= -
=

number of girls number of pupils number of boys

30 14

16
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which order they are written. The left and right sides are still equal if the sides are swapped 
(Figure 9.12a).

The second principle is that the left and 
right sides of an equation remain equal if 
the same operation is performed on each side. 
For example, the sides are still equal to each 
other if the same value is added to each side: 
Figure 9.12b shows that, if ‘2’ is added to 
each side, they remain equal (each has a value 
of 7). The same applies if the same value is 
subtracted from each side: if 3 is subtracted 
from each side, they are both equal to 2.

Returning to the original formula for working 
out the total number of pupils in a class, how 
could we rearrange this so that ‘number of boys’ is the subject of the formula (i.e. on the left)? 
Figure 9.13 shows how the two principles for rearranging equations can be applied to do this.

Writing out the steps like this might seem a bit laborious (though if symbols were used for 
the variables rather than words, it would be both quicker to write as well as clearer to see). 
However, manipulating equations in this way emphasises the understanding of the principles, 
which is important for equations where it may not be so straightforward. After gaining 
in confidence and understanding, some pupils might begin to take shortcuts, but it is not 
recommended that these should be taught as this can lead to misconceptions. It is better to 
teach in a way that focuses on the principles in order to develop understanding.

After rearranging a formula, it is always important to check it and to think about whether it 
makes sense (see Section 9.5 The real-world meaning of a formula on page 93).

9.7	 Rearranging formulae involving multiplication and division 
Many formulae in 11–16 science involve three variables that are directly proportional or 
inversely proportional to each other. For example, the formula that defines density is:

=
massdensity  

volume

Suppose that you know the density and the volume of something and want to use the 
formula to calculate its mass. It needs to be rearranged so that mass is the subject of the 

formula. Rearranging such formulae is something that pupils find quite challenging. 

Figure 9.12  Principles for rearranging 
equations

(a) Swapping sides

2 + 3 = 5
the sides remain equal if the sides are swapped:

5 = 2 + 3

(b) Doing the same thing to each side

2 + 3 = 5
the sides remain equal if the same operation is 

performed on each side:
2 + 3 + 2 = 5 + 2
2 + 3 − 3 = 5 − 3

Figure 9.13  Applying the principles

The original formula:

      number of pupils = number of boys + number of girls

So that ‘number of boys’ is on the left, swap sides:

      number of boys + number of girls = number of pupils

In order to have just ‘number of boys’ on the left side, subtract ‘number of girls’ from each side:

      number of boys + number of girls − number of girls = number of pupils − number of girls

This gives:

      number of boys = number of pupils − number of girls
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Working first with just numbers may help pupils to explore and get a better sense of the 
different ways of expressing the relationship, for example:

=
12 2
6

 could be rearranged as 2 ́  6 = 12 or =
126
2

 and so on.

Rearranging the formula for density uses the same two principles as in the previous section on 
addition and subtraction. Figure 9.14 shows how the principles of swapping sides and carrying 
out the same operation on both sides can be used to make mass the subject of the formula.

Suppose instead that we want to rearrange  
the original formula so that volume is the 
subject of the formula. This is shown in 
Figure 9.15. As always, pupils should check 
the meaning of a rearranged formula: does 
it make sense that volume is directly 
proportional to mass and inversely 
proportional to density? Would the formula 
be obviously wrong if these were reversed 
(so that density was divided by mass)? 

Again, confident pupils might take shortcuts, 
but it is recommended that teaching should 
always emphasise an understanding of the 
principles by carrying out all of the steps.

9.8	 Rearranging other formulae
Most formulae in 11–16 science involve 
only addition, subtraction, multiplication 
and division. One exception is the formula 
for kinetic energy. Suppose we want to 
rearrange this to make ‘speed (v)’ the 
subject of the formula.

Ek = ½mv2

Figure 9.14  Rearranging to make mass the subject of the formula

The original formula:

    
=

mass
density  

volume

So that ‘mass’ is on the left, swap sides:

    
=

mass
density

volume

To remove volume from the left side, multiply each side by ‘volume’:

    
´ = ´

mass
volume volume density

volume

On the left side, ‘volume’ cancels out (since volume ÷ volume = 1), and so 
the rearranged formula becomes:

      mass = volume × density

Figure 9.15  Rearranging to make volume the 
subject of the formula

The original formula:

    
=

mass
density  

volume

Here, swapping sides is not a helpful first step to 
get ‘volume’ on its own on the left side. Instead, 
multiply each side by ‘volume’:

    
´ = ´

mass
volume density  volume

volume

On the right side, ‘volume’ cancels out (since 
volume ÷ volume = 1):

      volume × density = mass

In order to remove ‘density’ from the left side, 
divide each side by ‘density’:

    

´
=

volume density mass
 

density density

On the left side, ‘density’ cancels out (since 
density ÷ density = 1), and so the rearranged 
formula becomes:

    
=

mass
volume  

density
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This is a bit more difficult than the previous examples, but again illustrates the same two 
principles for rearranging equations (Figure 9.16).

Another example, this time involving reciprocals, is the formula for the total resistance of two 
resistors in parallel:

= +
total 1 2

1 1 1
R R R

There are a number of different ways that this could be rearranged so that Rtotal is the subject, 
though they all give the same result. Figure 9.17 shows one way of doing this.

Although this example is considerably more demanding than the previous examples, it still 
uses the same two principles for rearranging equations.

Figure 9.16  Rearranging to make velocity the subject of the formula

The original formula:

      Ek = ½mv2

So that v is on the left, swap sides:

      ½mv2 = Ek

To remove the ½, multiply both sides by 2:

      mv2 = 2Ek

Divide both sides by m:

    
=2 k2E

v
m

Taking square roots of each side gives the final formula (this is another 
example of ‘doing the same thing to both sides’):

    
= k2E

v
m

Figure 9.17  Rearranging to make total resistance the subject of the formula

Original formula:

    
= +

total 1 2

1 1 1
R R R

Multiply both sides by R1R2Rtotal

    

æ ö÷ç ÷= +ç ÷ç ÷çè ø
1 2 total

1 2 total
total 1 2

1 1R R R
R R R

R R R

This simplifies to:

      R1R2 = R2Rtotal + R1Rtotal

Rearrange the expression on the right-hand side:

      R1R2 = Rtotal(R1 + R2)

Swap sides:

      Rtotal(R1 + R2) = R1R2

Divide both sides by (R1 + R2):

    
=

+
1 2

total
1 2

R R
R

R R
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9.9	 Calculations without formulae
The idea that a formula tells a ‘story’ also works the other way round. It is useful to remember 
formulae, but knowing things about the way the world works means that formulae can often 
be worked out. In addition, it may not always be necessary to use a formula. This section 
gives two examples to illustrate this.

Example 1
What is the mass of 20 cm3 of aluminium (density= 2.7 g/cm3)? One way of answering this 
question would be to write down the relevant formula (from memory or looking it up) and 
then substitute the values. Alternatively, it can be done by reasoning about the situation:

(1)	 1 cm3 of aluminium has a mass of 2.7 g
(2)	 20 cm3 of aluminium has a mass of 20 ́  2.7 g = 54 g

Step (1) is using the original information to explain what the density implies. In step (2), the 
reasoning is that 20 times the volume of aluminium will have 20 times the mass.

Example 2 (which requires more steps):
What chemical amount (in moles) of water molecules are there in 10 g of water (molar mass=
18 g/mol)?

(1)	 18 g of water contains 1 mol of water molecules
(2)	 1 g of water contains 1/18 mol of water molecules
(3)	 10 g of water contains 10/18 mol of water molecules = 0.56 mol

Step (1) is using the original information to explain what the molar mass implies. In step (2), 
the reasoning is that 1/18 of the mass of water will have 1/18 of the chemical amount (in 
moles). Finally, in step (3), similar reasoning means that 10 times the mass of water has 
10 times the chemical amount.

This technique is an example of proportional reasoning. Since it involves a step in which you 
calculate the value of one variable when the other has a numerical value of 1, it is known as 
the unitary method.

9.10	 Use of ‘calculation triangles’
A quite common technique for avoiding the need to rearrange formulae is the use of 
‘calculation triangles’. Many teachers dislike this method as they see it as a way of getting 
the right answer in an examination without any need for real understanding. Pupils often 
like the method for precisely the same reason, and some teachers may therefore feel under an 
obligation to use the method. The technique is generally regarded as poor practice because it 
does not encourage pupils to develop their understanding of these kinds of relationship.

An example of its use can be illustrated with the following question: What is the current 
through a resistance of 10 Ω if a potential difference of 3 V is applied across it?

If this calculation is done using equations then the first step is to write down the formula that 
relates the three variables:

potential difference = current ́  resistance

The next step is to rearrange this so that current is the subject of the formula:

=
potential differencecurrent

resistance
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Substituting the values for potential difference (3 V) and resistance (10 Ω) gives the current as 
0.3 A.

How to do this with a calculation triangle is shown in Figure 9.18. The relationship between 
potential difference (V ), current (I) and resistance (R) is represented in Figure 9.18a. 
Covering up any one of the symbols in this triangle gives the expression required to 
calculate it. For example, to calculate the value of the current, the symbol ‘I ’ is covered 
up (Figure 9.18b). Substituting the values in the expression for the remaining symbols 
(Figure 9.18c) gives the required answer.

Figure 9.18  Using ‘calculation triangles’ does not encourage understanding

(a) A calculation triangle (b) Covering up the symbol ‘I’ . . . (c) . . . gives the expression for 
calculating it

Figure 9.18 
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Of course, in order to use a ‘calculation triangle’, a pupil first needs to write it down with the 
three symbols in the correct positions. One of the problems with this method is that this is 
not the way that formulae are shown in scientific texts, nor the way the pupils are expected 
to remember them. So, remembering the correct calculation triangle requires at least as much 
work as remembering the formula.

Even once the triangle is written down, the use of this representation focuses more on just 
getting the right answer. As discussed in Section 9.5, pupils should always be thinking about 
the real-world meaning of a formula.

There are a variety of formulae in school science but calculation triangles have limited 
applicability and pupils may not always appreciate this. If they try to use triangles for 
equations that involve addition and subtraction, they will get incorrect results. Relying on 
their use means that pupils are not developing the skills to become fluent in rearranging 
different types of equations.

On a positive note, the visual form of a calculation triangle does emphasise that the three 
variables are related to each other, and that any of the variables can be calculated from the 
other two. A formula shows just one of these calculations. If teachers do feel pressurised into 
using them, they should be used as a complement to the understanding of the nature and 
meaning of equations rather than as a replacement.

9.11	 Mathematical equations and relationships in science
Many relationships in science can be modelled by a small number of mathematical 
equations. Figures 9.19–9.24 show the most common of these, and how they can be 
represented on line graphs. Each figure shows the relevant mathematical equation (expressed 
using x and y), along with an example of where such a relationship can be found in science.

Figure 9.19 shows a proportional relationship (or a directly proportional relationship). This is 
a particularly common relationship in science and is discussed in detail in Chapter 5 Working 
with proportionality and ratio. The graph shows a straight line that passes through the origin. 
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An example of this is a resistor that follows Ohm’s Law, in which the current through it is 
proportional to the potential difference applied across it. This means that, for example, if the 
potential difference is doubled then the current also doubles.

Figure 9.20 shows a linear relationship. This is similar to a proportional relationship in that 
the graph shows a straight line, but here it does not pass through the origin. An example of 
this is Hooke’s Law, in which the total length of a spring increases linearly with the force 
exerted on it. This means that equal increases in force produce equal increases in the length of 
the spring. The intercept on the vertical axis is the length of the spring when the force on it 
is zero, i.e. the ‘normal’ length of the spring.

Note that the general equation for a proportional relationship is often written as y=kx, 
where k is the constant of proportionality. In Figure 9.19 it is written as y=mx, in order to 
emphasise the similarity to the general equation for a linear relationship, y=mx+ c, as shown 
in Figure 9.20. A proportional relationship is a special case of a linear relationship in which 
c=0. Since c is the intercept on the vertical axis, this means that, when it is zero, the line 
passes through the origin.

Figure 9.19  Proportional relationship: y = mx

y = 2x

Maths and science graphs ‐ Proportional

m 2

x y
‐5 ‐10
‐4 ‐8
‐3 ‐6
‐2 ‐4
‐1 ‐2
0 0
1 2
2 4
3 6
4 8
5 10
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Figure 9.20  Linear relationship: y = mx + c
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In Figure 9.20, the length of the spring is plotted on the vertical axis; subtracting its ‘normal’ 
length from these values gives the extension of the spring. Plotting these values would ‘shift 
the line down’ so that it passes through the origin. Instead of a linear relationship, this would 
then represent a proportional relationship. Extension is proportional to force and when there 
is no force the extension is zero.

Figure 9.21 shows a square relationship. Note here that the graph on the left includes both 
positive and negative values of x, while the science example just shows the right side of the 
graph representing only positive values. The example here is the relationship between the 
kinetic energy of an object and its speed (for which negative values would have no real-world 
meaning). This relationship is not linear: the line on the graph is curved, and it shows that 
the kinetic energy increases more rapidly than the speed.

Figure 9.22 shows an inversely proportional relationship (or an inverse relationship). This 
kind of relationship is also discussed in Chapter 5 Working with proportionality and ratio. 
Again, note that the graph on the left shows both positive and negative values of x. An 
example in science is the relationship between the volume and pressure of a fixed mass of gas. 
The inverse relationship means that, for example, if the pressure is doubled then the volume is 
halved. Note that, as the pressure is increased, the volume gets smaller and smaller but never 
reaches zero (it would if the pressure were infinite but this is impossible). On the graph, 
therefore, the curve gets closer and closer to the horizontal axis but never actually meets it. 
(The technical term for the line to which a curve is tending is an asymptote.)

Figure 9.23 shows an exponential relationship. The rising curve on the graph looks similar 
to the curve for the square relationship but, in fact, an exponential curve rises much more 
rapidly than a square relationship does. Exponential relationships are found whenever the rate 
of change of a quantity is proportional to the quantity itself. For example, if the numbers of 
bacteria double every hour then, starting with 1 bacterium, there would be just 2 at the end 
of the first hour. In the fifth hour, there would be 16 at the start which would rise to 32. This 
leads to very rapid growth – if they continue to increase like this then there would be over 
16 million at the end of 24 hours. In reality, there would be limits to the growth of increasing 
numbers of bacteria so, unlike the graph on the left, the curve cannot go on rising forever.

Figure 9.21  Square relationship: y = ax2
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In the case of bacterial growth, the exponent x in the equation y=ax is greater than 1 and 
the change is an example of exponential growth. In radioactive decay, the rate of decay is 
proportional to the amount of radioactive material remaining but in this case the exponent is 
smaller than 1. The graph slopes downwards, rapidly at first and then slowly approaching the 
horizontal axis. This is an example of exponential decay.

Figure 9.24 shows an inverse square relationship. This is similar in shape to the inverse 
relationship but the decrease towards the horizontal axis is rather steeper in this case. An 
example is the way that the intensity (or irradiance) of light from a lamp decreases as you 
move away from the lamp. Again, the curve approaches the horizontal axis but never meets 
it. So, as you move away from a lamp, the light intensity falls quite steeply but theoretically 
would never drop to zero, no matter how far you moved away.

Figure 9.22  Inversely proportional relationship: =
a

y
x

=
2

y
x
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Figure 9.23  Exponential relationship: y = ax

y = 2x
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9.12	 Graphs of quantities against time: gradients
A line graph shows the relationship between two variables. The way the line rises or falls tells 
us about how fast or slow the change is – i.e. about the rate of change of one variable with 
another. This section looks at line graphs that show changes over time (i.e. time is the variable 
on the horizontal axis); such line graphs tend to be the easiest to interpret because the way we 
talk about the horizontal axis on a graph often reflects a sense of ‘one thing happening after 
another’ in going from left to right. However, the principles discussed here apply to any kind 
of a line graph.

Figure 9.25 shows two graphs that represent a bath filling with water. In Figure 9.25a, the 
bath starts with 50 litres of water (the intercept on the vertical axis) and reaches 200 litres 
after 10 minutes. The straight line shows that the bath is filling up at a constant rate. In 
Figure 9.25b, the bath also starts with 50 litres and reaches 200 litres after 10 minutes, but 
here it is not filling up steadily – the rate changes. At the beginning it fills up more quickly, 
and then slows down towards the end.

Figure 9.25  Graphs of quantities against time: a bath filling with water

(a) (b)
A bath filling ‐ gradients and areas ‐ with units
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The gradient of the line represents the rate of change. Pupils need to be able to calculate the 
gradient of a line on a graph plotted by hand on graph paper. Figure 9.26a shows how this is 
done for a straight line graph. Finding the gradient involves finding the value for the change 
in the quantity on the horizontal axis and the corresponding change in the quantity on the 
vertical axis, and then dividing one by the other. The changes in the quantities can be found 

Figure 9.24  Inverse square relationship: =
2
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by drawing a triangle, as shown in Figure 9.26a. It is always best to draw the triangle as large 
as possible (so that the values can be measured more accurately), while at the same time 
choosing a convenient value along the horizontal (in this case 10 minutes).

If pupils have drawn a line of best fit, they need to understand why drawing a triangle on the 
fitted line to calculate a gradient is better than just using the two extreme data points. Each 
of the data points is subject to measurement uncertainty, so the fitted line is the ‘best guess’ 
of the nature of the relationship.

The change along the vertical axis is 150 litres (200 litres -  50 litres). The gradient is then 
found by dividing the vertical value by the horizontal value:

= =
150 litresgradient 15 litres/minute

10 minutes

The gradient represents the rate at which water is flowing into the bath. In this example, the 
flow rate is constant: 15 litres are added to the bath every minute.

In the other example, shown in Figure 9.26b, the gradient of the curve changes over time. 
For example, the rate of change is greater at 3 minutes than at 7 minutes. This can be 
emphasised by drawing a tangent to the curve at each of these points. The gradient of the 
tangent at 3 minutes is steeper than the one at 7 minutes.

Figure 9.26  Finding the value of a rate by calculating the gradient of a line

(a) (b)
A bath filling ‐ gradients and areas ‐ with units
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(c) (d)

A bath filling ‐ gradients and areas ‐ with units
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To draw a tangent by hand at a particular point on the curve, it is best to first mark this point 
on the curve. A ruler can then be positioned so that it passes through this point, with the 
curve on either side of this point sloping away from the ruler.

The gradients of these tangents can be calculated in the same way as before, by drawing a 
conveniently sized triangle, as shown in Figures 9.26c and 9.26d. The values of the gradient 
work out, in fact, at 21 litres/minute and 9 litres/minute respectively.
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Drawing a tangent to a curve and calculating the gradient gives an instantaneous rate of 
change, i.e. the rate at that particular instant in time. It is not the same as the average (mean) 
rate up to that point in time. This would be found by dividing the total change in volume by 
the total time elapsed. It is important to make this distinction between instantaneous rate of 
change and average rate of change.

A similar distinction is important in the case of a graph of potential difference (V ) against 
current (I) for a non-ohmic component, such as a filament bulb. Since it does not follow 
Ohm’s Law, it is not a straight line graph but a curve. The resistance (R) of the component 
at any point is found by dividing the value of V by the value of I (R=V/I). However, it is 
sometimes believed, incorrectly, that it is the gradient at a point on the curve that gives the 
resistance (R) at that point. This is not the resistance but is the instantaneous rate of change of 
V with I (the change in V divided by the change in I). For a resistor that follows Ohm’s Law, 
the graph is a straight line passing through the origin: calculating the gradient of the line 
gives the same value as calculating V/I for any pair of points along it.

9.13	 Graphs of rates against time: area under the line
The previous section showed how it was possible to calculate a gradient at any point along 
a line. Suppose that this is done for a series of points along each of the lines in the graphs 
shown earlier in Figure 9.25. These gradients represent the rate of change of the volume of 
water in the bath at each of these points in time (i.e. the rate of flow of the water). If these 
values are then plotted against time, the line graphs obtained are shown in Figure 9.27.

The first of these graphs (Figure 9.27a) shows a horizontal straight line. This represents a 
constant rate of flow of water, with a value of 15 litres/minute.

The second graph (Figure 9.27b) also shows a straight line but here it slopes downwards. The 
flow rate starts at a high value (30 litres/minute) and then drops to zero after 10 minutes. 
Since it is a straight line, it means that the rate of flow decreases at a constant rate over this 
period of time. What we are talking about here is a rate of change of a rate of change – quite 
a complex idea! This idea is quite commonly encountered in 11–16 science, though in a 
different context: an acceleration is a rate of change of a rate of change of displacement (see 
Section 10.7 Gradients of lines on speed–time and velocity–time graphs on page 116).

Figure 9.27  Graphs of rates against time: a bath filling with water

(a) (b)
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The previous section also showed how it is possible to use a graph showing a quantity plotted 
against time to calculate a rate of change of the quantity. It is also possible to go ‘backwards’. In 
other words, it is possible to use a graph showing a rate of change of a quantity plotted against 
time to calculate the quantity.
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Suppose we want to find the volume of water added to the bath between 3 minutes and 
7 minutes. The graph in Figure 9.28a shows this period of time for the ‘constant flow’ bath. 
From this we can see that water flowed at a rate of 15 litres/minute for 4 minutes. To obtain 
the volume of water added in this time, we multiply these two values together, giving a total 
of 60 litres.

One way of thinking about this calculation is that it is the same as calculating the area of 
the shaded rectangle, i.e. the area under the line on the graph. In fact, for any line graph 
where the line represents the values for a rate of change of a quantity, the area under the line 
represents the value of the quantity.

Figure 9.28  Finding the value of a quantity by calculating the area under a line

(a) (b)

A bath filling ‐ gradients and areas ‐ with units

e12 12

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12

R
at

e 
of

 fl
ow

 (l
itr

es
/m

in
)

Time (minutes)

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12

R
at

e 
of

 fl
ow

 (l
itr

es
/m

in
)

Time (minutes)

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12

V
ol

um
e 

in
 b

at
h 

(li
tr

es
)

Time (minutes)

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12

V
ol

um
e 

in
 b

at
h 

(li
tr

es
)

Time (minutes)

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12

V
ol

um
e 

in
 b

at
h 

(li
tr

es
)

Time (minutes)

Start
time

End
time

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12

V
ol

um
e 

in
 b

at
h 

(li
tr

es
)

Time (minutes)

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12

R
at

e 
of

 fl
ow

 (l
itr

es
/m

in
)

Time (minutes)

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12

R
at

e 
of

 fl
ow

 (l
itr

es
/m

in
)

Time (minutes)

Start
time

End
time

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12

V
ol

um
e 

in
 b

at
h 

(li
tr

es
)

Time (minutes)

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12

V
ol

um
e 

in
 b

at
h 

(li
tr

es
)

Time (minutes)

A bath filling ‐ gradients and areas ‐ with units

e12 12

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12

R
at

e 
of

 fl
ow

 (l
itr

es
/m

in
)

Time (minutes)

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12

R
at

e 
of

 fl
ow

 (l
itr

es
/m

in
)

Time (minutes)

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12

V
ol

um
e 

in
 b

at
h 

(li
tr

es
)

Time (minutes)

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12

V
ol

um
e 

in
 b

at
h 

(li
tr

es
)

Time (minutes)

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12

V
ol

um
e 

in
 b

at
h 

(li
tr

es
)

Time (minutes)

Start
time

End
time

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12
V

ol
um

e 
in

 b
at

h 
(li

tr
es

)
Time (minutes)

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12

R
at

e 
of

 fl
ow

 (l
itr

es
/m

in
)

Time (minutes)

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12

R
at

e 
of

 fl
ow

 (l
itr

es
/m

in
)

Time (minutes)

Start
time

End
time

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12

V
ol

um
e 

in
 b

at
h 

(li
tr

es
)

Time (minutes)

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12

V
ol

um
e 

in
 b

at
h 

(li
tr

es
)

Time (minutes)

This idea, of calculating the area under the line on a graph also applies to the bath that is 
being filled with a changing rate of flow of water. This is shown in Figure 9.28b. Here, it is 
not quite so straightforward to calculate the area because it is not a rectangle. 

One way of doing this is to split the area into two parts – a rectangle with a triangle on 
the top. The areas of these can then be found separately and added together. (The area of a 
right-angled triangle is one half of the area of a rectangle with the same base and height; see 
Section 10.2 Length, area and volume on page 108 for the formula to calculate the area of a 
right-angled triangle.) 

Another way of doing this is to multiply the mean rate of flow by the time. On this graph, 
the mean rate of flow is the value at 5 minutes (it is the mean of the values at 3 and 
7 minutes). This is equivalent to calculating the shape of the whole shaded area, which is a 
trapezium; pupils learn about calculating the area of a trapezium in mathematics.

Both of the graphs in Figure 9.28 are straight line graphs. If the graph had shown a curve 
then the area under the curve would still have the same meaning, though finding it would be 
less straightforward. One technique, if the graph is plotted on graph paper, is to estimate the 
numbers of large and small grid squares that are under the curve, and add up the areas.

Talking about baths filling with water is a concrete way of thinking about these ideas. In 
11–16 science, however, pupils more often use calculations of the ‘area under a line’ in the 
context of velocity–time graphs (or speed–time graphs). These are discussed in more detail in 
Section 10.8 Area under the line on speed–time and velocity–time graphs on page 118.



The Language of Mathematics in Science: A Guide for Teachers of 11–16 Science	 107

10	Mathematics and the real world

In school mathematics teaching, real-world contexts may be used to help pupils understand 
abstract ideas as well as how they can be applied. Some of these contexts are the same as those 
that are also studied in school science. This section looks at such overlaps, in particular those 
related to the fundamental quantities of mass, length and time.

10.1	 Mass and weight
In everyday life, it is quite common to talk about the weights of things measured in grams (g) 
or kilograms (kg). These are the units shown on familiar items such as kitchen scales or 
bathroom scales, and it is usual to think of these as devices for weighing things.

In science, however, an important distinction is made between the mass of an object and the 
weight of an object: the kilogram is a unit of mass, and weights are measured in newtons (N). 
It is not that science is correct and everyday language is wrong, but that words are used in 
different ways in different contexts. Pupils need to understand these differences.

Weight may be the more intuitive concept – heavy objects weigh a lot and are hard to lift up. 
Weight can be defined scientifically as the gravitational force exerted on an object, and most 
pupils know that things weigh less on the Moon than on Earth because there is ‘less gravity’. 
However, if an object is taken from the Earth to the Moon, there is still the same amount of 
‘stuff’ or matter in it, even if it weighs less; its mass is a measure of the amount of matter in 
the object.

Why is this distinction important in science? The following two equations illustrate 
the difference:

kinetic energy = ½mv2 (where m = mass and v = velocity)
weight = mg (where m = mass and g = gravitational field strength)

Kinetic energy depends only on an object’s mass and velocity. For example, an object of mass 2 kg 
travelling at 3 m/s has a kinetic energy of 9 J (½ ́  2 kg ́  (3 m/s)2). Its kinetic energy is 9 J 
whether it is travelling on Earth, on the Moon or in space, since its mass is the same in all of 
these places.

The weight of an object depends on the gravitational field strength. The value of this is 
slightly different in different places on the Earth (e.g. in Birmingham it is 9.817 N/kg 

Key words: mass, weight, area, volume, square, cuboid, cube, scale drawing, scale 
factor, linear dimension, cross-sectional area, surface area, surface area : volume 
ratio, radius, diameter, circumference, scalar, vector, distance, displacement, speed, 
velocity, gradient, distance–time graph, displacement–time graph, speed–time graph, 
velocity–time graph, area under the line (on a graph).
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and in Los Angeles it is 9.796 N/kg), but the average is about 9.81 N/kg. On the Moon, 
it is much less, at about 1.63 N/kg. A person with a mass of 75 kg would have a weight 
on Earth of about 736 N (75 kg ́  9.81 N/kg) but a smaller weight on the Moon of about 
122 N (75 kg ́  1.63 N/kg).

Although the weight of this 75 kg person would be slightly different in different places on 
Earth, the difference is very small (e.g. about 1.002 times heavier in Birmingham than Los 
Angeles). It is therefore convenient to assume that the gravitational field strength is constant 
across the Earth, and to treat the weight of an object as being proportional to its mass.

This is the justification for the everyday practice of talking about weights measured in 
kilograms. It would sound odd and out of place in a shop to talk about ‘finding the mass’ of 
some apples rather than ‘weighing them’. However, in the school science laboratory, pupils 
using a balance calibrated in grams should always talk of it as measuring mass.

In school mathematics, it is common to see the term mass used in its scientific sense, but 
it is possible that pupils may come across books and resources that use the term weight in 
its everyday sense. In science, it is essential to understand the distinction between mass and 
weight, as well as being aware of how the terms may be used outside the science classroom.

10.2	 Length, area and volume
In mathematics lessons, pupils are likely to have learnt about calculating areas and volumes 
for a variety of two-dimensional and three-dimensional shapes, including the use of units 
and how to convert from one unit to another. In 11–16 science, pupils also come across 
calculations of areas and volumes, though for a more limited range of shapes.

For two-dimensional shapes, the following formulae are used to calculate the areas of a 
rectangle, a square (the special case of a rectangle with equal sides), and a right-angled triangle:

area of a rectangle = a ́  b (where a and b are the lengths of the sides)

area of a square = a2 (where a is the length of the side)

area of a right-angled triangle = ½bh (where b is the base and h is the height)

When calculating the area of a rectangle, the units of 
the length for each side should be the same. Common 
units of measurement of length are millimetres (mm), 
centimetres (cm), metres (m) and kilometres (km). The 
corresponding units of area are square millimetres (mm2), 
square centimetres (cm2), square metres (m2) and square 
kilometres (km2).

The area of a rectangle of 2 cm by 3 cm is 6 cm2. What is 
this area expressed in square millimetres (mm2)? An easy 
mistake to make is to think that, since 1 cm= 10 mm, 6 cm2

= 60 mm2. Figure 10.1 makes the point that a square with 
a side of 1 cm contains 100 (10 ́  10) squares with a side of 
1 mm. Thus, 6 cm2= 600 mm2.

Similarly, in 1 m2 there are 10 000 cm2 (100 cm ́  100 cm), 
and in 1 km2 there are 1 000 000 m2 (1000 m ́  1000 m).

Figure 10.1  An area of 1 cm2 
equals 100 mm2 
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For three-dimensional shapes, the following formulae are used to calculate the volumes of a 
cuboid (a shape for which each face is a rectangle) and a cube (the special case of a cuboid 
with equal sides):

volume of a cuboid = a ́  b ́  c (where a, b and c are the lengths of the sides)

volume of a cube = a3 (where a is the length of the side)

When calculating the volume of a cuboid, the units of the length for each side should be the 
same. Common units of volume are cubic millimetres (mm3), cubic centimetres (cm3), cubic 
decimetres (dm3) and cubic metres (m3).

In everyday life, the volumes of liquids, 
such as milk or soft drinks, are usually given 
in millilitres (ml) or litres (l). These units 
are still encountered in science for liquid 
measurement, though their use is historical. 
The accepted units are cubic centimetres 
(1 cm3= 1 ml) and cubic decimetres 
(1 dm3= 1 l). As the name suggests, there 
are 1000 millilitres in 1 litre; Figure 10.2 
illustrates that in 1 dm3 there are 1000 cm3 
(10 cm ́  10 cm ́  10 cm).

Similarly, in 1 m3 there are 1000 dm3 
(10 dm ́  10 dm ́  10 dm), and 
1 000 000 cm3 (100 cm ́  100 cm ́  100 cm).

Pupils should understand that the dimensions 
of the unit indicate what quantity is being 
measured; for example, cm2 (two dimensions) is a measure of area while mm3 (three dimensions) 
is a measure of volume.

10.3	 Scale factor, cross-sectional area and surface area
A scale drawing is one in which all of the dimensions of the original object are multiplied by 
a constant scale factor. (Scale factors are discussed in Section 5.9 Scale drawings and images 
on page 48.) For example, in Figure 10.3a, a rectangle with sides of 1 cm and 2 cm has an 
area of 2 cm2. Re-drawing this with a scale factor of 2 (i.e. doubling the length of each side, 
called the linear dimensions) gives a rectangle with sides of 2 cm and 4 cm and an area of 
8 cm2. Doubling the linear dimensions increases the area not by 2 but by 4 times. (The scale 
factor is 2, so the area changes by 22 times.)

Similarly for a three-dimensional object, doubling the linear dimensions does not 
result in a simple doubling of the volume. Figure 10.3b shows a cuboid of dimensions 
1 cm ́  1 cm ́  2 cm, giving a volume of 2 cm3. Doubling the linear dimensions of the object 
gives a volume of 16 cm3 (2 cm ́  2 cm ́  4 cm). Thus, doubling the linear dimensions 
increases the volume not by 2 but by 8 times. (The scale factor is 2, so the volume changes by 
23 times.)

Figure 10.2  A volume of 1 dm3 equals 1000 cm3
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Figure 10.3  Effects of scaling
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In summary, when an object is scaled:

change in the linear dimensions µ scale factor

change in the area µ (scale factor)2

change in the volume µ (scale factor)3

The examples given in Figure 10.3 relate to a doubling of the linear dimensions (a scale 
factor of 2) but the same principles apply to other scale factors. For example, if the linear 
dimensions are trebled (a scale factor of 3) then the area increases by 9 times (32) and the 
volume increases by 27 times (33).

These scaling effects are important in many areas of science, particularly biology. For 
example, it explains why the legs of an elephant are much thicker relative to its body size than 
those of a mouse. Figure 10.4 shows how doubling the linear dimensions of a cuboid affects 
its volume and its cross-sectional area. The volume increases 8 times, but the cross-sectional 
area only 4 times.

Figure 10.4  Cross-sectional area and scaling 
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The strength of an animal’s legs is related to their cross-sectional area, while the weight of the 
animal is related to its volume. If a mouse were to be scaled up in size, its legs would not be 
strong enough to support its weight. It is because weight increases faster than strength that an 
elephant’s legs are relatively much thicker.

Another similar example is the limit placed on the size of a biological cell. The surface area 
of a cell must be sufficient for substances to diffuse into and out of the cell fast enough. 
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Figure 10.5 shows the effect of doubling the size of a cuboid on its volume and on its surface 

area. As in the previous example, the volume increases 8 times, but the surface area only 
4 times.

This idea is usefully expressed in terms of the surface area : volume ratio. Since the change 
in the area is proportional to (scale factor)2 and the change in the volume is proportional 
to (scale factor)3, this means that the change in the surface area : volume ratio is inversely 
proportional to the scale factor. That is, doubling the linear dimensions leads to a halving of 
the surface area : volume ratio.

If a biological cell is scaled up in size, its surface area : volume ratio gets smaller, and it is this 
that puts a limit on the size of a cell. Substances are not able to move in and out through the 
surface of the cell fast enough for its volume.

Figure 10.5  Effect of size on surface area : volume ratio
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The surface area : volume ratio is also affected by the shape of an object. If you have eight 
cubes each of 1 cm3, there are various ways of arranging them. Whichever way they are 
arranged, they always have the same total volume (8 cm3) but the surface areas may be 
different. To have the smallest surface area, they need to be arranged in a cube (2 ́  2 ́  2), 
as shown on the left of Figure 10.6. Counting the number of squares on each face shows 
that this has a total surface area of 24 cm2. The arrangement with the largest surface area 
(8 ́  1 ́  1) is shown on the right. This has a surface area of 32 cm2.
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Figure 10.6  Effect of shape on surface area : volume ratio
 

 

 

An example of this in the real world is how to keep warm in cold conditions. It is better to 
try to roll up into a ball, thus reducing your surface area from which heat can escape. (Note 
that a sphere has a smaller surface area than a cube of the same volume. A sphere is the shape 
that has the smallest possible surface area : volume ratio.)

Human perception is not good at comparing the volumes of objects. The drawing in 
Figure 10.7 represents two objects, the second of which is twice the volume of the first. It is 
not easy to judge this by eye. Talking about ‘doubling the size of an object’ is ambiguous if it 
is not made clear whether this is referring to the linear dimensions, the area or the volume.

Figure 10.7  It is difficult to compare the volumes of objects

 

On a bar chart it is relatively easy to compare the sizes of the bars because we only need to 
pay attention to the length of the bars. Some ‘informal’ graphical displays replace the bars 
with different sized 3D representations of an object that are related to the quantity being 
plotted (pictograms). For example, electricity consumption may be represented by different 
sized light bulbs. Because of the difficulties in making the comparisons, such displays can 
be misleading (and indeed may sometimes be used to mislead deliberately). Using 3D 
representations in bar charts is best avoided.

10.4	 Circles and spheres
Modelling biological aspects of the world using squares and cubes may be convenient, but in 
nature such shapes are less common than circles and spheres. However, calculations involving 
these (which always involve π) are not so easy to handle and are not much used in 11–16 
science, though pupils should be familiar with the formulae for doing such calculations from 
their mathematics lessons.

Mathematically, a circle and a sphere are defined in terms of the set of points that are a 
fixed distance (the radius) from the centre. However, for a real object, such as a coin or a 
ball bearing, it is the diameter that is more easily measured. So, while in mathematics the 
formulae used are usually based on the radius, in science the context determines whether it is 
more useful to use radius or diameter.

In the following formulae, the letter r represents the radius:

diameter of a circle = 2r

circumference of a circle = 2πr
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area of a circle = πr2

surface area of a sphere = 4πr2

volume of a sphere =  4
3 πr3

An important point about such formulae is that the power to which r is raised (r, r2 or r3) is a 
clue to the nature of what is being calculated:

•	 the diameter and circumference of a circle are linear dimensions and are proportional 
to r

•	 the area of a circle and the surface area of a sphere are proportional to r2

•	 the volume of a sphere is proportional to r3.

These relationships mean that scaling effects are the same for a sphere as for a cube so, in 
terms of modelling, a cube is just as good a shape as a sphere. In fact, since cubes can be 
stacked together into different shapes in a way that spheres cannot, they are more useful in 
modelling scaling effects.

10.5	 Scalars and vectors: distance and displacement
Some quantities have both a size and a direction. A force is an example – its size can be 
measured in newtons (N), and it also acts in a particular direction. It is called a vector 
quantity. Other quantities, such as volume, have a size but no direction and are called 
scalar quantities.

This distinction, between vector and scalar quantities, arises when thinking about the 
movement of things from one place to another. For example, imagine you walk the path as 
illustrated in Figure 10.8.

Figure 10.8  A simple path

A: 100 metres South

B: 200 metres East

C: 100 metres North

 

 

 

100 m 100 m 

200 m

There are two ways of thinking about how far you have gone. The first is to think about the 
length of the path you have walked – in total, 400 metres (100 metres+200 metres+  
100 metres). The second is to think about how far you have ended up from where you 
started. This is shown by the dotted line: 200 metres East of the start.

The scientific terms for these two ways of expressing how far you have gone are distance 
and displacement:

•	 Distance: This is a scalar quantity. It has a size but no direction. For example, the 
distance for part A of the journey is 100 metres. The total distance for the whole 
journey (400 metres) can be found by adding the values of the distances for each part 
of the journey together.

•	 Displacement: This is a vector quantity. It has both a size and a direction. For 
example, the displacement for part A of the journey is 100 metres South. Finding the 
displacement for the whole journey (200 metres East) involves more than just adding 
the sizes together, since the direction needs to be taken into account.
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Adding displacements together gets even more complicated if they can be at any angle to 
each other, not just right angles. This involves using trigonometry (sines, cosines, and so on). 
This kind of addition of vectors is important in post-16 physics but, for 11–16 science, 
calculations on vector addition are made simple by only working in one dimension. However, 
pupils at this level may be expected to know how to represent the addition of vectors 
graphically, by making scale drawings of situations involving forces.

Figure 10.9 shows an example of vectors in one dimension. It shows displacements for 
various locations relative to a person’s home (shown as 0 m). In this diagram, displacements 
to the right are indicated by a ‘plus’ sign, and those to the left by a ‘minus’ sign (rather 
than using terms like East and West to indicate direction). This is a very commonly 
used convention.

Figure 10.9  Displacements in one dimension

 

park home cinema shop 

−100 m 0 m +50 m +150 m 

Thus, travelling from home to the shop is a displacement of +50 m, and travelling from the 
shop to the cinema is a further displacement of +100 m. To go from the shop to the park is 
a total distance of 150 m, and as this is in the left direction, the displacement is -150 m (i.e. 
negative). Going in the opposite direction, from the park to the shop, is the same distance 
(150 m), but the displacement is +150 m (i.e. positive). In order to be able to manipulate 
such vectors, pupils need to know how to add and subtract positive and negative numbers 
(see Section 9.3 Operations and symbols on page 90).

Note that, although working in one dimension makes things simpler, it also means that 
the vector/scalar distinction is more subtle. The only difference between a distance and a 
displacement is whether or not there is a sign (+ or -) in front of the value. For movement 
in two or three dimensions, the differences are more obvious, as the direction is stated in 
full. However, using the terms distance and displacement correctly is essential. If not, it leads 
to confusion when it comes to doing calculations and drawing graphs. Unfortunately, this 
distinction is not always made sufficiently clear.

10.6	 Movement of objects: speed and velocity
The speed of a moving object is defined as the distance it travels in unit time, and the 
formula is:

=
distancespeed  

time

Since distance is a scalar quantity (i.e. it does not have a direction), speed is also a scalar 
quantity. The term for speed in a particular direction is velocity – this is a vector quantity and 
is found from this formula:

=
displacementvelocity  

time

As its name suggests, the speedometer on a car measures speed. A car going at a constant 
speed along a straight motorway is also moving at a constant velocity, since its direction stays 
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the same. However, if it goes round a corner at a constant speed (so that the reading on the 
speedometer stays the same), its velocity is not constant. The velocity is continually changing 
around a corner since its direction is changing.

The formulae for speed and velocity can be rearranged to give the following two equations:

distance = speed ́  time

displacement = velocity ́  time

The equations both have the form y = mx. The first of these equations shows that, if we plot 
a line graph of distance against time for a moving object, the gradient of the line is its speed. 
Similarly, the second equation shows that if we plot a line graph of displacement against time for 
an object moving in one dimension, the gradient of the line is its velocity. Such graphs are very 
useful for showing the behaviour of a moving object, and will be illustrated with an example.

Figure 10.10 shows the journey of a cyclist who travels from home to the cinema, then to the 
park and back home. (Since the three places are in a straight line it is a one-dimensional journey.) 
Note that the total distance that the cyclist travels is 500 m (150 m+250 m+  100 m); however, 
the total displacement is zero, because the cyclist ends up in the same place as at the start.

Figure 10.10  A one-dimensional journey

 

park home cinema 

−100 m 0 m +150 m 

velocity = +2 m/s 

velocity = −5 m/s 

velocity = +4 m/s 

Figure 10.11a shows a distance–time graph for this journey. The gradients for each line 
segment indicate the speeds for each part of the journey. The cyclist starts slowly, then speeds 
up for the second part, and slows down a little at the end. Note that on a distance–time graph, 
the value for the distance must always get larger over time (you cannot ‘undo’ the distance 
travelled), so the gradient of the line is never negative (i.e. it never slopes downwards).

Figure 10.11b shows a displacement–time graph for the journey. Although the journey 
is the same, the appearance of the graph is very different. Here, the gradients for each line 
segment indicate the velocities for each part of the journey. Initially, the velocity is positive 
(the gradient is positive and slopes upwards), but then the velocity becomes negative (the 
gradient is negative and slopes downwards). In other words, the cyclist changes direction. 
After another change in direction, the velocity is positive again and the final value of the 
displacement is zero (the cyclist is home).

Although the term ‘displacement–time graph’ is common in school science, strictly speaking, 
such a graph cannot be drawn since displacement is a vector. A graph cannot show both the 
size and direction of a quantity. What is called a ‘displacement–time graph’ actually shows how 
the size of the component in a chosen direction of the displacement of an object changes over time. 
Such graphs are useful only for objects moving in a straight line. A similar point also applies to 
what are called ‘velocity–time graphs’ (discussed below), since velocity is also a vector.
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In mathematics, the displacement here might be referred to as the ‘distance of the cyclist 
from home’, but for a one-dimensional journey these are essentially the same. At the end 
of the journey, the cyclist’s distance from home is zero, and the graph would still have the 
same shape.

In summary, plotting distance and displacement on a graph can show how these quantities 
change over time. The rate of change of distance is speed, and the rate of change of 
displacement is velocity. It is also possible to plot speed and velocity on a graph to see how 
these change over time as well.

Figure 10.11  The same journey represented in different ways

(a)  Distance–time graph (b)  Displacement–time graph
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(c)  Speed–time graph (d)  Velocity–time graph
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Figure 10.11c shows a speed–time graph, again for the same journey. It shows that, for each 
of the three stages, the cyclist was travelling at different constant speeds, i.e. each of the lines 
is horizontal. Figure 10.11d shows a velocity–time graph. This also shows three horizontal 
lines representing constant velocities for each of these stages. The difference here is that the 
second of these lines is below the horizontal axis, indicating that the velocity is negative. 

10.7	 Gradients of lines on speed–time and velocity–time graphs
The gradient of a line on a speed–time graph or a velocity–time graph indicates the rate 
at which the speed or velocity is changing. This is called acceleration. The graphs shown in 
Figure 10.11 are idealised and do not represent what a real journey would look like, since 
the changes in speed or velocity happen in zero time. The lines on the graph are vertical: this 
implies that the acceleration is infinitely large.

A more realistic situation to illustrate the meaning of acceleration is a ball being thrown 
vertically upwards from the ground and then falling back down to the ground. The change 
in the ball’s height with time is show in Figure 10.12. The changing gradient tells us that, as 



The Language of Mathematics in Science: A Guide for Teachers of 11–16 Science	 117

Chapter 10: Mathematics and the real world

the ball gets higher, it gets slower and slower until it reaches its maximum height; it then gets 
faster and faster until it reaches the ground.

Figure 10.12  A ball thrown vertically upwards
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Strictly speaking, acceleration is the rate of change of velocity (i.e. it is a vector quantity), and 
can be calculated using the formula:

=
change in velocityacceleration  

time

However, in school science, it is also commonly used to mean the rate of change of speed 
(i.e. a scalar quantity). Because the same word is used to mean two different things, it is 
important that the context makes it clear whether it is referring to the rate of change of speed 
or of velocity. A helpful way of making this difference explicit is to talk of a scalar acceleration 
(rate of change of speed) or a vector acceleration (rate of change of velocity).

Figure 10.13 shows a speed–time graph and a velocity–time graph for the ball thrown upwards.

Figure 10.13  Representing speed and velocity for a ball thrown vertically upwards

(a)  Speed–time graph (b)  Velocity–time graph
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The speed–time graph in Figure 10.13a shows that the ball’s speed constantly decreases 
until it reaches zero (the maximum height) and then steadily increases; in other words, it 
decelerates and then accelerates. The gradient of the graph represents a scalar acceleration: for 
the first part it is negative (the ball is slowing down, or decelerating) and for the second part it 
is positive (the ball is getting faster, or accelerating).

Note that, while it is useful to talk about an object accelerating or decelerating, the term 
deceleration is better avoided, since only the term acceleration represents a quantity with a value.

The velocity–time graph in Figure 10.13b uses the convention that positive values of velocity 
mean ‘going up’ and negative values mean ‘going down’ (values of displacement are taken as 
positive above ground and negative below it). Here, the gradient has the same negative value 
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throughout – it represents a constant vector acceleration in the downwards direction. The 
velocity starts with a positive value, decreases until it becomes zero, and continues to decrease 
when it becomes negative. 

Thus, the meaning of a positive or negative acceleration depends on the way the term is 
being used.

•	 Scalar acceleration: A positive acceleration means getting faster; a negative acceleration 
means getting slower.

•	 Vector acceleration: The sign (i.e. direction) of the acceleration on its own gives no 
indication whether the ball is getting faster or slower – it depends on the direction of 
the velocity. An acceleration in the same direction as the velocity (both positive or both 
negative) means getting faster; an acceleration in a different direction to the velocity 
(one is positive, the other negative) means getting slower.

10.8	 Area under the line on speed–time and velocity–time graphs
On a graph showing a rate of change against time, the area under the line is meaningful 
(see Section 9.13 Graphs of rates against time: area under the line on page 105). For a 
speed–time graph, the vertical axis represents the rate of change of distance (speed) and the 
horizontal axis represents time. The area under the line then represents distance. Figure 10.14a 
shows the speed–time graph with the areas for each stage of the journey marked. The area 
of ‘A’ is 2 m/s ́  75 s. This gives 150 m – the distance travelled in this stage of the journey. 
Calculating the areas of ‘B’ and ‘C’ and then adding all the areas together will give the total 
distance travelled.

In a similar way, displacement can be found by adding together the areas on a velocity–time 

graph. However, in this case, since velocity can have both positive and negative values, so too 
can the areas. In Figure 10.14b, the areas of ‘A’ and ‘C’ are positive, but ‘B’ is negative (it is 
below the horizontal axis). Since for this journey the displacement is zero, the two areas on 
this graph above the line are equal to the area below, and when they are all added together the 
total area is zero. 

Figure 10.14  Using areas to find distance or displacement

(a)  Distance from a speed–time graph (b)  Displacement from a velocity–time graph
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The area under the line on a distance–time graph (distance ́  time) does not have any real-
world meaning, and the same applies to the area under the line on a displacement–time 
graph (displacement ́  time). Thus, while the gradients of the lines on the four graphs shown 
in Figure 10.11 all have a real-world meaning, the areas under the line are meaningful only for 
the speed–time and velocity–time graphs.
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This glossary contains mathematical terms that are relevant to 11–16 science. The aim is to promote a 
common understanding of these terms among teachers, publishers, awarding bodies and others. The 
definitions are not intended for pupils, although it is hoped that they will form a good basis for others 
to develop glossaries for pupils appropriate to different contexts.

The definitions in the glossary have been kept as consistent as possible with existing sources, where 
relevant. These include, in particular, Mathematics Glossary for Teachers in Key Stages 1 to 3 (NCETM) 
and The Language of Measurement (ASE/Nuffield), as well as Mathematics Glossary for Teachers in Key 
Stages 1 to 4 (QCA), on which the NCETM glossary was based, and Signs, Symbols & Systematics: 
The ASE Companion to 16–19 Science (ASE). (See Further references on terminology and conventions on 
page 5 in the Introduction for more details of these publications.) The glossary is intended to be 
complementary to The Language of Measurement, and so only those terms from that publication that 
are essential for the mathematical ideas in the current publication have been included.

Each of the chapters in this publication deals with clusters of key words selected from the list in this 
glossary. These are included in a panel at the start of each chapter (note that a number of key words 
appear in more than one chapter). The ‘Section’ column in the glossary gives links to the sections 
where the key words are discussed in detail, so the glossary also acts as an index. The key words in the 
chapters are indicated in blue underlined text. In the ‘Definition’ column, italic terms are key words 
than can be found elsewhere in the glossary.

Key words Definition Section

algebraic equation See equation. 9.1
anomaly An anomaly (or anomalous value) is a measured value that 

appears not to fit the pattern of the other measurements, and 
is often (though not always) due to a mistake. For example, a 
value that is very different from the others in a set of repeated 
measurements, or a data point that lies far from a line of best fit. 
See also outlier.

6.8

approximation A value that is not exact, but sufficiently close to the actual 
value for it to be useful.

2.7

area A measure of the size of a surface (usually measured in square 
units, for example cm2 or m2).

10.2
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Key words Definition Section

area under the line 
(on a graph)

On a graph, the area under a straight line between two values 
on the horizontal axis may have a physical meaning. The area 
is found by multiplying two values: the mean of the values on 
the vertical axis, and the difference between the two values on 
the horizontal axis. For example, on a speed–time graph, the area 
represents the mean (or average) speed multiplied by the time 
interval: this gives the distance travelled. If a speed–time graph 
shows a curve rather than a straight line, the area under the 
curve also represents the distance travelled, though it is not so 
straightforward to calculate.

9.13, 10.8

arithmetic mean The sum of a set of values divided by the number of values in 
the set. Often referred to simply as a mean (though there are 
other types of mean, such as geometric mean).

2.4, 6.5

average A measure of the ‘typical value’ of a set of data. Sometimes used 
synonymously with mean (or arithmetic mean) even though 
there are other measures of average, such as median and mode.

6.5

axis On a graph or a chart, an axis is a reference line along which 
distances may represent values of a variable. See also horizontal 
axis and vertical axis.

4.1

axis label On the axis of a graph, the axis label shows the name of the 
variable and its unit where appropriate.

4.1

bar chart A display for presenting data, in which bars of equal width 
represent the set of values. Each value is proportional to the 
length of the bar. The bars may be vertical or horizontal. See 
also grouped bar chart and stacked bar chart.

3.3, 3.4, 
3.5, 3.7, 
4.1, 6.4

base unit In the International System of Units (SI), there are seven 
base units. These are the units of the fundamental (and 
independent) quantities of length (metre), mass (kilogram), 
time (second), electric current (ampere), temperature (kelvin), 
chemical amount (mole) and light intensity (candela). See also 
derived unit.

2.1

batch A set of values related to a single quantity or variable, for 
example repeated measurements of the time for a ball to drop a 
certain distance, or the heights of pupils in a school.

6.4, 8.3, 
8.4, 8.5

box plot A diagram that represents the distribution of values in a batch of 
data. The central box represents the interquartile range, and the 
median is shown as a line within the box. Lines extend above 
and below the box to the highest and lowest values.

6.6, 6.7, 
8.3, 8.5

brackets Symbols used to group numbers and letters in expressions, and 
indicating certain operations as having priority. See order of 
operations.

9.4



The Language of Mathematics in Science: A Guide for Teachers of 11–16 Science	 121

Glossary for teachers
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categorical Categorical data are data that can be sorted into categories 
(e.g. different ‘eye colours’ or ‘food groups’) but cannot be 
ordered (since they are ‘labels’ that have no particular order). 
Categorical data are qualitative data.

1.4, 3.2, 
6.4

circumference The distance around a circle (its perimeter). 10.4
class interval When drawing a histogram, the set of quantitative data is split 

into a number of classes (groups). The class interval is the range 
of values within each class.

6.4

coefficient In mathematics, a coefficient is a factor of an algebraic term, 
though often it is used to mean a ‘numerical coefficient’. For 
example, in the term 4xy, 4 is the numerical coefficient of xy, 
but x is also the coefficient of 4y and y is the coefficient of 4x.

In science, the term is also used to apply to the properties of 
particular materials (e.g. the coefficient of expansion).

9.2

combined events A combination of two or more events. The probability of a 
combined event can be calculated by multiplying together each 
of the probabilities of the separate events, but only if these are 
independent events.

6.9

compound measure In mathematics, a compound measure is one that involves two 
(or more) other measures of different types. For example, speed 
(which can be calculated from distance / time) is a compound 
measure, and has units of metres per second.

2.1

constant A number or quantity that does not vary. For example, in 
the equation y = 3x +  6, the 3 and 6 are constants, where x 
and y are variables. In the general equation for a straight line, 
y  mx+ c, m and c are constants for a specific line.

In science, the term may be used to refer to ‘universal constants’ 
(e.g. the speed of light or the Avogadro constant) or to values 
that are constant within a particular context (e.g. for a spring 
that follows Hooke’s Law, the value of the spring constant is 
constant for a specific spring).

5.4, 9.2

constant of 
proportionality

In a directly proportional relationship between two variables, 
x and y, of the form y = kx, the constant k is referred to as the 
constant of proportionality.

5.4, 5.5, 
5.9, 9.11

continuous Continuous data are a type of quantitative data (numerical 
data) for which the values can take on any value within a 
certain range (e.g. the heights of pupils or the temperatures of 
an object.). See also discrete.

1.4, 3.2, 
6.4

control variable In an investigation, the control variables are those that are kept 
constant by the investigator.

1.5

coordinate On a graph, the coordinates determine the position of 
each data point in relation to the axes. See x-coordinate and 
y-coordinate.

4.7
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correlation A measure of the strength of the association between two 
variables. High correlation implies a close relationship and 
low correlation a less close one. If an increase in one variable 
corresponds to an increase in the other, the correlation is 
positive. If an increase in one variable corresponds to a decrease 
in the other, the correlation is negative.

8.7

cross-sectional area The area of a cross-section of a three-dimensional object or 
geometrical figure. The cross-section is the surface that would 
be exposed by making a ‘straight cut’ through the object, often 
at right angles to an axis of symmetry.

10.3

cube In geometry, a three-dimensional figure with six identical 
square faces.

In number (arithmetic) and algebra, the result of cubing 
a number or expression. For example, 23 (pronounced ‘two 
cubed’) is 2´2´2 = 8.

10.2 

2.5

cube root A value whose cube is equal to a given value. For example, the 
cube root of 8 is 2 (since 23 = 8), and this is represented as 

=3 8 2  or  =1 38 2.

2.5

cuboid A three-dimensional figure with six rectangular faces. (Some of 
the rectangular faces may be squares; a cube is a special cuboid 
in which all the faces are squares.) 

10.2

data point On a line graph or a scatter graph, a data point is represented by 
a symbol (e.g. ´ or +). Its position represents a pair of values 
for the two variables.

3.6, 4.1, 
4.7

decimal A term commonly used synonymously with ‘decimal fraction’, 
where the number of tenths, hundredths, thousandths, etc. are 
represented as digits following a decimal point.

2.2

decimal place In a decimal, each column after the decimal point is a decimal 
place. For example, 5.275 is said to have three decimal places.

2.3

dependent variable In an investigation, the dependent variables are those that are 
observed or measured by the investigator.

1.5, 3.6, 
4.2

derived unit All SI units, except for the seven base units, are derived units. 
They are produced by suitable multiplication or division 
involving two or more of the base units.

2.1

diameter Any straight line segment joining two points on a circle or 
sphere that passes through the centre.

10.4

Glossary for teachers
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directly proportional If the algebraic relation between two variables, x and y, 
is of the form y = kx (where k is a constant), y is directly 
proportional to x. It also follows that x is directly proportional 
to y (since = 1

kx y). Another way of expressing this (more 
common in mathematics than in science) is that x and y are in 
direct proportion.

If y is directly proportional to x, when x is doubled, y also 
doubles, and when x is multiplied by 10, y is also multiplied 
by 10.

The graphical representation of y = kx is a straight line through 
the origin, where k is the gradient of the line.

The word ‘directly’ is often dropped, and the term proportional 
is used to mean the same thing. Using the full term ‘directly 
proportional’, however, is helpful when it is being contrasted to 
inversely proportional.

5.2, 9.5, 
9.7, 9.11

discrete Discrete data are a type of quantitative data (numerical data) 
for which the values can take on only certain values. These are 
often integer values produced by counting (e.g. the number of 
trees in a survey area). See also continuous.

1.4, 3.2, 
6.4

displacement The length and direction of the straight line from the 
initial position of an object to its position at a later time. 
Displacement is a vector quantity.

10.5

displacement–time 
graph

A graph showing how the displacement of an object changes 
over time.

10.6

distance The length of the path along which an object has moved. 
Distance is a scalar quantity.

10.5

distance–time graph A graph showing how the distance of an object changes over time. 10.6
distribution For a set of data, the way in which values in the set are 

distributed (or spread out) between the highest and lowest 
values.

6.4, 6.7

equation A mathematical statement showing that two expressions are 
equal. The expressions are linked with the equals ( ) sign. Also 
referred to as algebraic equations where the expressions contain 
variables. A formula is an equation that shows the relationship 
between real-world variables.

In science, the term ‘equation’ is also used to refer to a chemical 
equation.

9.1, 9.2, 
9.3, 9.11

estimate A rough or approximate value, found by calculating with 
suitable approximations or using previous experience.

2.7

experiment An investigation in which variables may be manipulated and 
data are collected by observing the effects of changing some of 
the variables. See also survey.

1.5
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exponent In index notation, the term ‘exponent’ is used synonymously 
with index.

2.5

exponential 
relationship

A relationship between two variables, x and y, of the form 
= .xy a  For example, if = 2a , each increase of 1 for x 

corresponds to a doubling of y.

9.11

expression A mathematical form expressed symbolically, consisting of a 
combination of numbers and variables that may be evaluated. 
Expressions do not contain the equals (=) sign.

9.1, 9.3, 
9.4

extrapolation On a graph, extrapolation means estimating the value of one 
variable from a value of the other, using a line of best fit that is 
extended beyond the range of the available data. Care needs to 
be taken, since the relationship may not apply outside the data 
range. See also interpolation.

7.5

factor In an investigation, an independent variable is often referred to 
as a factor, particularly when it is a categorical variable.

In mathematics, the term has an entirely different meaning: 
when a number can be expressed as the product of two or more 
numbers, these are factors of the first. For example, 2 and 3 are 
factors of 6.

1.5, 3.2, 
3.4, 3.5

formula An equation that shows the relationship between real-world 
variables. By rearranging the formula, it is possible to make any 
of the other variables the subject of the formula.

In science, the term ‘formula’ is also used to refer to a chemical 
formula.

9.1, 9.4, 
9.5, 9.6, 
9.7, 9.8, 
9.9

fraction The result of dividing one integer by a second integer, which 
must be non-zero.

2.2

frequency In statistics, the number of times an event occurs, or the 
number of individuals or objects with some specific property. 
(Although it is a very different context, in science, the 
frequency of a wave or an oscillation has a related meaning – 
the number of cycles per unit of time.) 

3.2, 6.4

frequency table A table showing the frequencies of objects or events in different 
categories or class intervals.

3.2

gradient On a graph, the gradient is a measure of the steepness of a 
line, and is calculated by dividing the vertical change by the 
corresponding horizontal change. It represents the rate at 
which the variable plotted on the vertical axis changes with the 
variable plotted on the horizontal axis.

3.6, 5.3, 
7.2, 7.3, 
9.12, 10.6, 
10.7

grouped bar chart A type of bar chart used to represent data categorised by two 
factors. Each group of bars represents one factor, and the bars 
within each group represent the other factor. (Also known as a 
clustered bar chart.)

3.5
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grouped data Discrete data and continuous data can be grouped into class 
intervals and counted to produce a frequency table. This is called 
grouped data.

3.2

histogram In science, the term ‘histogram’ is used to refer to a 
representation of the distribution of data, in which the height 
of each bar is proportional to the frequency of values in each 
class: all of the class intervals are equal, and the bars are of 
equal width.

In mathematics and statistics, the class intervals may not all 
be equal, and so the bars may be of different widths. The area 
of each bar is proportional to the frequency of values in each 
class, and the height of each rectangle represents the ‘frequency 
density’ of the class.

6.4, 6.7, 
8.3

horizontal axis On a line graph or a scatter graph, the horizontal axis usually 
represents the independent variable. (See also x-axis.)

3.6, 4.1, 
4.2, 5.3

independent events Two events are independent if the probability of the second 
event is not affected by the outcome of the first.

6.9

independent variable In an investigation, the independent variables are those that are 
changed by the investigator.

1.5, 3.6, 
4.2

index In index notation, the superscript is called the index, for 
example in a4 the index is 4. (Note that the plural of index 
is indices.) It is also possible to have fractional and negative 
indices.

2.5

index notation The notation in which a product such as a´a´a´a is recorded 
as a4. 

2.5

integer Any of the positive or negative whole numbers and zero (e.g. 
. . ., -2, -1, 0, +1, +2, . . .).

1.4, 2.3

intercept On a graph, the point at which a straight line or a curve crosses 
an axis is called an intercept. The term ‘intercept’ is typically 
used in relation to the vertical axis (y-axis), but also applies to 
the horizontal axis (x-axis).

7.2, 7.6, 
9.11, 9.12

interpolation On a graph, interpolation means estimating the value of 
one variable from a value of the other, using a line of best fit 
that does not extend beyond the range of the data. See also 
extrapolation.

7.5

interquartile range The difference between the upper and lower quartiles. It 
contains the middle half of the values in the ordered data set. 
It is a useful measure of spread since, unlike the range, it is not 
much affected by outliers.

6.6, 8.3
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inverse Inverse operations are ‘opposite’ operations that ‘undo each 
other’. For example, subtraction is the inverse of addition, and 
-5 is the additive inverse of 5 since their sum is zero. Division 
is the inverse of multiplication, and ⅓ is the multiplicative 
inverse of 3 since their product is 1. (Sometimes, the term is used 
synonymously with reciprocal, for example ‘the inverse of 2 is ½’.)

5.4

inverse square 
relationship

A relationship between two variables, x and y, of the form 
= 2 ,y a x  where a is a constant.

9.11

inversely 
proportional

If the algebraic relation between two variables, x and y, is of the 
form =y k x  (where k is a constant), y is inversely proportional 
to x. It also follows that x is inversely proportional to y (since 
=x k y ). Another way of expressing the equation is = .xy k

If y is inversely proportional to x then, for example, when x 
is doubled, y is halved, and when x is multiplied by 10, y is 
divided by 10.

5.4, 5.5, 
9.5, 9.7, 
9.11

line graph In mathematics, a line graph is a graph in which adjacent data 
points are joined by straight-line segments. Such graphs are also 
used in science.

However, a ‘line graph’ in science more often refers to a graph 
where it is assumed that there is a simple relationship between 
the two variables, such that a line of best fit can be drawn that 
is very close to all the data points. In practice, not all the data 
points fit on this line because of measurement uncertainty. 

3.3, 3.6, 
4.1, 5.2, 
7.1, 7.2, 
9.11, 9.12, 
9.13

line of best fit A line drawn on a graph that passes through or as close as 
possible to the data points. It represents the best estimate of any 
underlying relationship between the variables. A ‘line of best fit’ 
often refers to a straight line but it may also be a curve.

7.4, 8.8

linear On a graph, a relationship is said to be linear if it is represented 
by a straight line. See also linear relationship.

7.2

linear dimension A term often used in the context of scaling. A linear dimension 
refers to the distance between two points of a geometric figure. 
When comparing two similar geometric figures, the scale factor 
applies only to the linear dimensions (any two corresponding 
lengths), and not to the area or volume.

5.9, 10.3, 
10.4

linear relationship If the relationship between two variables, x and y, is linear, 
equal changes in x correspond to equal changes in y. For 
example, with a spring that follows Hooke’s Law, for each 
additional 100 g mass suspended from the spring, its length 
increases by the same amount as before. 

The equation for a linear relationship can be expressed in 
the form = + .y mx c  When represented as a graph, this is a 
straight line for which m is the gradient of the line and c is the 
intercept on the y-axis.

7.2, 7.4, 
9.11
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mass A measure of the quantity of matter in an object. The SI base 
unit of mass is the kilogram (kg). In science, it is important to 
distinguish between mass and weight.

10.1

mean The sum of a set of values divided by the number of values in 
the set. (More correctly called the arithmetic mean, as there are 
also other types of mean, such as geometric mean.) See also 
average.

2.4, 6.5

median The middle value in a set of data when all the values are 
arranged in order. An equal number of data values lie above and 
below the median. See also average.

6.5, 8.3

mode The most commonly occurring value in a set of discrete data. 
Some sets of data may have more than one mode. See also 
average.

6.5

non-linear A non-linear relationship is one that is not linear and, on a 
graph, is represented by a curve and not by a straight line. See 
also linear relationship.

7.2

order of magnitude The approximate size, often given as a power of 10. Orders of 
magnitude are particularly useful when comparing values of 
very different sizes. For example, 4763 is very roughly 1000 
times larger than 3.8, i.e. 103 or ‘three orders of magnitude 
larger’.

2.6, 2.7

order of operations The order in which different mathematical operations are 
applied in a calculation. The convention is often encapsulated 
in the mnemonic BIDMAS (Brackets, Indices, Division/
Multiplication, Addition/Subtraction) or BODMAS (where O 
represents Order or ‘to the power Of ’).

9.4

origin On a graph, the origin is the point at which the values of both 
variables are zero (the x-coordinate and the y-coordinate are both 
zero).

4.3, 5.2, 
7.2, 7.6, 
9.11

outlier A value in a set of data that is judged to be unusually large or 
unusually small in comparison with most of the other values, 
for whatever reason. In sampling a population, an outlier 
may indicate an individual with exceptional characteristics. 
By contrast, an outlier in a set of repeated measurements may 
indicate that a mistake has been made (see also anomaly).

6.8, 7.7, 
8.3

percentage A fraction expressed as the number of parts per hundred and 
recorded using the notation %.

5.8

percentile When the values in a batch of data are arranged in order, the 
percentiles are the values that split the data into 100 groups 
containing (as far as possible) equal numbers of values. For 
example, 10% of the data values lie below the 10th percentile. 
See also quartile.

8.3
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pie chart A display for presenting data, in which the sectors (like ‘slices 
of a pie’) represent the proportions of each of the values. The 
size of each value is proportional to the angle at the centre of the 
circle.

3.3, 3.4, 
3.5

population In statistics, a population is the entire collection of objects or 
events of a similar nature that are of interest in a study, and 
about which data may be collected. This is usually done by 
selecting a sample.

6.3, 8.2

power In index notation, the term ‘power’ is often used synonymously 
with index. Using the term ‘power’ in its correct sense, the 
expression 34 can be described as ‘the fourth power of 3’.

2.5

power of 10 Any number of the form 10n is called a power of 10, where n 
is an integer (negative, zero, or positive), for example . . . 10−2, 
10−1, 100, 101, 102, 103 (i.e. 0.01, 0.1, 1, 10, 100, 1000). Each 
number in the series is 10 times the previous number.

2.6

primary data Data collected directly by the user. See also raw data and 
secondary data.

1.5

probability The likelihood of an event happening. Probability is expressed 
on a scale from 0 to 1. Where an event cannot happen its 
probability is 0 and where it is certain its probability is 1.

6.9

proportional The term ‘proportional’ is often used to mean the same as 
directly proportional. Using the full term ‘directly proportional’, 
however, is helpful when it is being contrasted to inversely 
proportional.

5.1, 5.2, 
5.4, 5.5, 
5.7, 7.2, 
7.6, 9.9, 
9.11

qualitative data Data that are non-numerical (in contrast to quantitative data). 
See also categorical.

1.1, 6.4

quantitative data Data that are numerical (in contrast to qualitative data). See 
also continuous and discrete.

1.1, 6.4

quantity Any property that can be given a magnitude by measuring or 
counting.

1.1, 2.1

quartile When the values in a batch of data are arranged in order, 
the quartiles are the three values that split the data into four 
groups containing (as far as possible) equal numbers of values. 
They are called the first or lower quartile, the second quartile 
(or median), and the third or upper quartile. The difference 
between the upper and lower quartiles is the interquartile range.

6.6, 8.3

radius The distance from the centre of a circle or sphere to any point 
on the circle or sphere.

10.4

random error A component of measurement error due to measurements 
varying in unpredictable ways from one measurement to the 
next.

6.2
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random sample A sample from a population in which all the individuals in the 
population are selected at random and have an equal chance of 
being included in the sample.

8.2

range For a measuring instrument, the range is the set of values that 
can be measured, describing its lower and upper limits.

In an experiment investigating the relationship between two 
quantitative variables, the range refers to the lowest and highest 
values of a variable. For the independent variable the range is 
chosen by the experimenter and for the dependent variable the 
range is determined by the results of the experiment.

On a graph, the range of an axis indicates the highest and 
lowest values on the axis.

For a distribution of data, the range is a measure of spread, and 
is the difference between the highest and lowest values. Note 
that in school science, the term ‘range’ is generally used to 
indicate both the lowest and highest values themselves, and not 
the difference between them.

1.2 

4.3, 4.5 
 
 
 

4.3, 4.4 

6.6, 8.3

rate A measure of how quickly one variable changes in comparison 
with another variable. For example, speed is the rate of change 
of distance with time.

5.3, 7.3, 
9.12, 9.13

ratio A ratio shows the relative sizes of two values, usually written in 
the form a : b (and pronounced ‘the ratio of a to b’). Since a 
ratio is a comparison of two similar quantities, it does not have 
units.

5.6

raw data Data collected directly from experiments or surveys, before being 
processed. See also primary data.

1.5, 3.2

reciprocal The reciprocal of a value is 1 divided by the value; for example, 
the reciprocal of 2 is ½.

2.5, 5.4

recurring decimal A decimal with an infinitely repeating digit or group of digits 
(e.g. the fraction ⅓ is the decimal 0.33333…).

2.3

resolution The resolution of a measuring instrument is the smallest change 
in the quantity being measured that gives a perceptible change 
in the indication on the instrument.

1.2

risk Risk is related to the probability of harm occurring when 
exposed to a hazard. The actual value of a risk is often called the 
‘absolute risk’, while a ‘relative risk’ may be used to compare 
the risks for two different situations or groups (e.g. in a clinical 
trial, to compare the risks for the control group and for the 
treatment group).

6.10, 6.11

round ‘Rounding a number’ means expressing it as an approximation 
with fewer significant figures. For example, 5.432 rounded to 
the nearest 0.1 is 5.4 (from four to two significant figures).

2.3
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sample A subset of a population. In collecting data, a sample of 
observations may be made from which to draw inferences about 
a larger population.

6.3, 8.2

scalar A quantity that has a magnitude (size) but no direction, for 
example mass. See also vector.

10.5, 10.6

scale Used as a noun: a set of marks on a line with equal intervals. 
Applies to:

•	 an analogue measuring instrument

•	 the axis on a graph.

Used as a verb: to enlarge or reduce a number, quantity or 
measurement by a given amount (called a scale factor).

 

1.2
4.4, 4.5

5.9

scale drawing A representation of a physical object in which all lengths 
in the drawing are in the same ratio (the scale factor) to the 
corresponding lengths in the actual object.

5.9, 10.3

scale factor In a scale drawing, the ratio of any length in the drawing to the 
corresponding length in the physical object. More generally, the 
scale factor for two similar geometric figures is the ratio of any 
two corresponding lengths.

5.9, 10.3

scatter graph A graph on which paired values for two variables are plotted 
and which may indicate a relationship between the variables. 
On a scatter graph, it is not meaningful to join the data points 
with line segments, but a line of best fit may be drawn.

3.3, 3.6, 
4.1, 8.7, 
8.8

scientific notation See standard form. 2.6
secondary data Data obtained indirectly from sources such as books, articles or 

web pages. See also primary data.
1.5

significant figures The number of digits that contribute information about the size 
of a value (related to the measurement uncertainty).

1.2, 2.3

slope Sometimes used as an informal alternative to gradient, although 
gradient is the preferred term.

5.3

speed The rate of change of distance with time. Speed is a scalar 
quantity.

10.6

speed–time graph A graph showing how the speed of an object changes over time. 10.6, 10.7, 
10.8

spread For a batch of values, the term ‘spread’ refers to how close 
together or far apart the values are. Measures of spread include 
the range, interquartile range and standard deviation.

6.6

square In geometry, a two-dimensional figure with four equal sides and 
four right angles.

In number (arithmetic) and algebra, the result of squaring 
a number or expression. For example, 52 (pronounced ‘five 
squared’) is 5´5  25.

10.2 

2.5
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square root A value whose square is equal to a given value. For example, 
a square root of 25 is 5 (since 52 = 25), and this is recorded 
as 25 5.=  It also has a negative square root (-5), since 
(-5)2 = 25.

2.5

stacked bar chart A type of bar chart used to represent data categorised by two 
factors. Each bar represents one factor, and the segments within 
each bar represent the other factor. (Also known as a compound 
bar chart.)

3.5

standard form A form in which numbers are recorded as a number between 
1 and 10 multiplied by a power of 10. For example, 193 in 
standard form is recorded as 1.93´102. It is also referred to as 
standard index form and scientific notation.

2.6

standard index form See standard form. 2.6
stem-and-leaf 
diagram

A format for organising the values in a batch of data. The class 
intervals are represented on the vertical ‘stem’, and the values in 
each class interval are represented as horizontal rows forming 
the ‘leaves’.

8.3

subject of a formula A formula is an equation that shows the relationship between 
real-world variables. It is conventionally written so that one of 
these variables is ‘on its own’ on the left of the equals sign – this 
variable is called the subject of the formula. By rearranging the 
formula, it is possible to make any of the other variables the 
subject of the formula.

9.6, 9.7, 
9.8

surface area The area of the surface of a three-dimensional object or 
geometric figure.

10.3

surface area : volume 
ratio

The ratio of the surface area to the volume for a three-
dimensional object or geometric figure.

10.3

survey An investigation in which variables are hard to manipulate, 
and data are collected from samples of populations. See also 
experiment.

1.5

tangent On a graph, a straight line that touches a curve at only one 
point. The line has the same gradient as the gradient of the 
curve at that point. (The term is also used in trigonometry: the 
tangent of an angle in a right-angled triangle is the ratio of the 
length of the opposite side to the length of the adjacent side.)

9.12

tick mark On a graph or chart, the tick marks are the small lines along the 
axis at regular intervals, each representing a value on the scale.

4.1

tick mark label On a graph or chart, the number next to a tick mark indicating 
the size of the value.

4.1

time series A set of observations, generally measurements or counts, taken 
over time and usually at equally spaced intervals.

1.5, 3.6, 
4.2

true value The value that would be obtained in an ideal measurement. 6.2

Glossary for teachers



The Language of Mathematics in Science: A Guide for Teachers of 11–16 Science	 132

Glossary for teachers

Key words Definition Section

two-way table A frequency table in which the frequencies are categorised by two 
independent factors (categorical variables).

3.2

uncertainty The interval within which the true value can be expected to lie, 
with a given level of confidence or probability.

6.2

unit A unit of measurement is a standard used in measuring (e.g. the 
metre is a unit of length; the kilogram is a unit of mass).

1.1, 2.1, 
3.1, 4.6

unit prefix The prefix used to form a decimal multiple or submultiple of an 
SI unit (e.g. ‘kilo’ or ‘milli’).

2.6

value The value of a quantity or a variable may be a number, or may 
consist of a number and a unit.

1.1

variability Variability in a set of data relates to how spread out or how 
close together the values are. It may arise due to measurement 
uncertainty or due to differences between the individuals in a 
population.

6.1, 6.2, 
6.3, 8.3

variable In an investigation: a physical, chemical or biological quantity 
or characteristic that can differ from case to case. 

In an algebraic equation: a quantity that can take on a range of 
values, often denoted by a letter (e.g. x, y, z, t).

1.3, 1.5, 
2.1, 3.1, 
7.2, 8.7

1.5, 2.1, 
9.2

vector A quantity that has both a magnitude (size) and a direction, for 
example displacement. See also scalar.

10.5, 10.6

velocity The rate of change of displacement with time. Velocity is a vector 
quantity.

10.6

velocity–time graph A graph showing how the velocity of an object changes over 
time.

10.6, 10.7, 
10.8

vertical axis On a line graph or a scatter graph, the vertical axis usually 
represents the dependent variable. (See also y-axis.)

3.6, 4.1, 
4.2, 5.3

volume A measure of three-dimensional space (usually measured in 
cubic units, for example cm3, dm3 or m3).

10.2

weight The weight of an object can be defined as the gravitational force 
exerted on the object. Its SI derived unit is the newton (N). In 
everyday language, it is common for ‘weight’ to be measured in 
units of mass, for example grams (g) or kilograms (kg). In science, 
however, it is important to distinguish between weight and mass.

10.1

x-axis On a graph, the x-axis is the horizontal axis. 4.1, 4.2, 
5.3

x-coordinate On a graph, the x-coordinate of a data point is its distance along 
the x-axis.

4.1, 4.7, 
5.3

y-axis On a graph, the y-axis is the vertical axis. 4.1, 4.2, 
5.3

y-coordinate On a graph, the y-coordinate of a data point is its distance along 
the y-axis.

4.1, 4.7, 
5.3
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bodies and others to achieve a common understanding of important 
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on a particular aspect of scientific activity, such as data collection, 
analysis, looking for relationships, presenting data, using scientific 
models, and so on. 
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